The speed of shallow water waves can be derived using the relationship c^2 = gh, where g is the acceleration due to gravity and h is the water depth. The derivation employs Bernoulli's theorem and the continuity equation in a reference frame moving with the wave. By applying these principles, the equations reveal that the change in wave speed (δV) is related to the wave height (a) and the water depth (h). The continuity equation indicates that hδV = aV, allowing for simplification. Ultimately, this leads to the conclusion that V^2 = gh, confirming the relationship between wave speed and water depth.