Classical mechanics - finding distance D in terms of velocity

Rumor
Messages
11
Reaction score
0

Homework Statement



"A passenger (mass m) initially at rest steps out of an airplane. Assume down is the positive x-axis and put the origin at the airplane. Assume the air resistance force is linear in the velocity so F(air)= -mbv. Find the distance D he has fallen when his velocity is v."

Homework Equations



Equations of motion

The "vdv/dx trick": d2z/dt2 = (z-dot)*(d(z-dot)/dz)

F(tot) = ma

F(air) = -mbv

Weight = mg

The Attempt at a Solution



Here's how far I've gotten:

Since the skydiver is only falling in the x direction, there's only one equation of motion, which I found to be ma = -mbv + mg [or, alternatively, m(x-double dot) = -mb(x-dot) + mg]. Now, I know I want the relation of distance and velocity, without time, so I use the "vdv/dx" trick (so that there's no longer time in the equation).

That makes this mv*(dv/dx) = -mbv + mg, or m(x-dot)*(d(x-dot)/dx) = -mb(x-dot) + mg. I rearranged this to get dx = (-m/b)*(vdx/v-(mg/b)), where -(mg/b) is the terminal velocity.
I'm sorry for all the writing, but am I correct so far? And how do I continue to solve the problem from here? Any help would be appreciated.
 
Last edited:
Physics news on Phys.org
First off, divide through by m to simplify the expression a bit. Secondly, can you separate variables, i.e have things with "v" on one side and "x" on the other?
 
First, since m is common to every term, I would eliminate that to make things easier. Next, you have vdv/dx = g-bv. Try to isolate v and dv on one side, and dx on the other side.
 
Alright, so...

I went back and simplified what I had first and ended up with v(dv/dx) = -bv - g. So, after isolating dz, I end up with dz = -(vdv/(bv+g)).

Now, I know my next step is to integrate this, but I'm not sure what the limits would be.
 
The problem tells you what the limits should be.

"A passenger (mass m) initially at rest steps out of an airplane. Assume down is the positive x-axis and put the origin at the airplane. Assume the air resistance force is linear in the velocity so F(air)= -mbv. Find the distance D he has fallen when his velocity is v."
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top