Closed form solution for series

EvLer
Messages
454
Reaction score
0
I am kind of blocked on how to find closed form solution for these finite series:

sigma [nan]
(n = 0 to k)
k = any integer

thanks for any hints... and i can't find LaTex tutorials, where are they?
 
Physics news on Phys.org
So you may not know how to sum

\sum_{n=0}^{k} na^n

so what. You do know how to sum something similar, right? like, say,

\sum_{n=0}^{k} a^n

and is not \frac{d}{da}a^n = na^{n-1}?

so figure it out from there. (left click one of the expressions to see how to write them with symbols.)
 
Last edited:
A new sum from an old sum

To sum \sum_{n=0}^{k} na^n,

recall the sum of something similar, like, say,

\sum_{n=0}^{k} a^n = \frac{1-a^{k+1}}{1-a}

and consder that \frac{d}{da}a^n = na^{n-1}

that one may write

\frac{d}{da}\left( \sum_{n=0}^{k} a^n\right) = \frac{d}{da}\left( \frac{1-a^{k+1}}{1-a}\right)\Rightarrow \sum_{n=0}^{k}\left( \frac{d}{da}a^n\right) = \sum_{n=1}^{k}na^{n-1} =\frac{-(k+1)a^{k}(1-a)-(1-a^{k+1})(-1)}{(1-a)^2}

from the last equality, we have

a\sum_{n=1}^{k}na^{n-1} =a\frac{-(k+1)a^{k}(1-a)+(1-a^{k+1})}{(1-a)^2}\Rightarrow \sum_{n=1}^{k}na^{n} =\frac{a}{1-a}\left[ \frac{1-a^{k+1}}{1-a}-(k+1)a^{k}\right]

and since 0+\sum_{n=1}^{k}na^{n} = \sum_{n=0}^{k}na^{n},

we have

\boxed{ \sum_{n=0}^{k}na^{n} = \frac{a}{1-a}\left[ \frac{1-a^{k+1}}{1-a}-(k+1)a^{k}\right] = \frac{a}{(1-a)^2}\left[ 1+ka^{k+1}-(k+1)a^{k} \right] }​
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top