A Combinatorial optimization problem

AI Thread Summary
The discussion revolves around solving a combinatorial optimization problem involving selecting a set of tools to perform tasks at minimal cost. Suggested algorithms include branch and bound (B&B), network simplex for min-cost max-flow problems, dynamic programming, and mixed integer programming (MIP). The importance of LP relaxation for quick optimality bounds is highlighted, along with the potential of approximation algorithms and local search methods like simulated annealing. The complexity of NP-hard problems is acknowledged, emphasizing the need for sophisticated approaches. Overall, tackling such problems requires patience and a combination of various techniques for effective solutions.
csopi
Messages
81
Reaction score
2
Hi,
I have the following optimization problem. I have a list of tasks that I should be able to perform with my tools. Each tool costs a certain amount of money, and may be used to carry out a finite number of tasks. The goal is to choose an optimal set of tools in such a way that the toolset can do all the required tasks, while the total cost should be minimal.

Any idea what kind of algorithm shall I use to solve this? It looks like a standard combinatorial optimization problem, I suppose there should be a solution for it.

Many thanks!
 
Mathematics news on Phys.org
Start here and use the terms as search terms to find somethingof interest. It's a wide subject where there's a lot to earn, so there's an awful lot of material
 
BvU said:
Start here and use the terms as search terms to find somethingof interest. It's a wide subject where there's a lot to earn, so there's an awful lot of material

Thanks for the immediate reply! I have heard about this one, actually already tried a basic version. I am wondering if there are other methods? B & B is an "art" for me, not sure what is the most efficient way for bound estimation, that's why I am asking.
 
Can you formulate similar to a weighted bipartite matching problem (with tools on one side, and tasks on the other), and solve it as a min-cost max-flow problem using the network simplex algorithm?
 
Last edited:
  • Like
Likes StoneTemplePython
csopi said:
Thanks for the immediate reply! I have heard about this one, actually already tried a basic version. I am wondering if there are other methods? B & B is an "art" for me, not sure what is the most efficient way for bound estimation, that's why I am asking.

To be clear everything is an "art" when you're dealing with NP Hard problems. Combinatorial optimization problems invariably fall under into this bucket or close relative, unless there is some very special structure to exploit (see dynamic programming in particular if you find a way to make subproblems overlap and above post on network simplex, which roughly means very special linear program that gets integer results).

Other power tools are dynamic programming and mixed integer programming (MIP). These are for exact solutions and run in exponential time. A quick and easy bound on optimality comes when you relax the integer domain requirement of your problem and run it as a linear program.

There are tons of approximation algorithms out there as well, including some very powerful stuff with semidefinite programming that I've been meaning to learn. Local search with randomness sprinkled in is a popular method (simulated annealing being a well known flavor of this).

- - - -
In general this not an easy class of problems and it takes a lot of sophistication (and patience) to deal with this stuff. Sometimes people find ways to mix and match tools, creating an ensemble approach.

If it were me, I'd first code up the mixed integer program (and actually first run the LP relaxation to get a fast bound). Give the MIP a few hours and see if it terminates.
 
  • Like
Likes BvU
This 2013-2014 paper: The Simplex Algorithm is NP-mighty, by Yann Disser and Martin Skutella, has some good insights regarding use of the simplex algorithm as a tool for for solving NP-hard problems.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top