Coming up with the critical density formula

makosheva7
Messages
1
Reaction score
0

Homework Statement


"Imagine a galaxy with mass m at a distance r away from the center of a sphere, within
which a total mass M reside. As viewed by an observer in the center,
the galaxy appears to be receding according to the Hubble's law, v = H0r. To heuristically derive the critical density m0, we associate a kinetic energy to the galaxy's Hubble
ow, symbolically,1/2 mv^2, and balance this against its gravitational energy. If the density in the sphere is equal to the critical density, the total binding energy (kinetic plus gravitational) is zero. Show that this yields the following expression for the critical density."

Homework Equations


What am I doing wrong in my process to find the critical density formula based on the given information?

The Attempt at a Solution


My logic is:
1/2(M-m)v^2 = GMm/r
So using v = H0r and the volume of a sphere, I plug density(volume of sphere) into M-m, and H0r into v.
after doing this, my solution looks like this.
density = GMm/2∏r^6H0^2
I can't figure out the next step.
 
Physics news on Phys.org
makosheva7 said:

Homework Statement


"Imagine a galaxy with mass m at a distance r away from the center of a sphere, within
which a total mass M reside. As viewed by an observer in the center,
the galaxy appears to be receding according to the Hubble's law, v = H0r. To heuristically derive the critical density m0, we associate a kinetic energy to the galaxy's Hubble
ow, symbolically,1/2 mv^2, and balance this against its gravitational energy. If the density in the sphere is equal to the critical density, the total binding energy (kinetic plus gravitational) is zero. Show that this yields the following expression for the critical density."


Homework Equations


What am I doing wrong in my process to find the critical density formula based on the given information?


The Attempt at a Solution


My logic is:
1/2(M-m)v^2 = GMm/r
So using v = H0r and the volume of a sphere, I plug density(volume of sphere) into M-m, and H0r into v.
after doing this, my solution looks like this.
density = GMm/2∏r^6H0^2
I can't figure out the next step.

For one thing the kinetic energy of the galaxy is mv^2/2. I don't know why you are using (M-m). For another I would plug density(volume of sphere) into M. After that you really need to straighten up your algebra. Show you you got what you got.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top