How Do Transition Wavelengths Compare Between Hydrogen and Helium?

Shackleford
Messages
1,649
Reaction score
2
6.

http://i111.photobucket.com/albums/n149/camarolt4z28/2010-09-23195548.jpg?t=1285299756

I'm thinking I use the omegaij formula to determine the frequency between energy levels and then use that to calculate the wavelength.

http://i111.photobucket.com/albums/n149/camarolt4z28/2010-09-23195519.jpg?t=1285299772

http://i111.photobucket.com/albums/n149/camarolt4z28/2010-09-23194832.jpg?t=1285299825
 
Last edited by a moderator:
Physics news on Phys.org
sounds good.
 
zhermes said:
sounds good.

Well, I must be doing something computationally incorrectly.

For (1) hydrogen, I'm getting a wavelength of 1.93 x 10^-8 m or 19.3 nm.
 
Any bright ideas? lol.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top