TFM
- 1,016
- 0
Okay so:
T = \sqrt{\frac{I}{m} \frac{4 \pi^2}{((\mu_0 n I_{current}) - (B_Earth))}}
\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} = \frac{I}{m}
n = 20
Thus:
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 I_{current}) - (B_Earth))}}
Insert I = 0 Amp
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 * 0) - (B_Earth))}}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 * 0) - (B_Earth))}}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{-B_Earth}}
B earth: 5 x 10^-5
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
\mu_0 = 4pi * 10 ^-7
T = \sqrt{\frac{((80(4\pi * 10^{-7})) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
T = \sqrt{(-39.1) (-7.9 * 10^5)}
and:
T = \sqrt{3.08 * 10^7}
and:
T = 5553
Seems a bit big?
TFM
T = \sqrt{\frac{I}{m} \frac{4 \pi^2}{((\mu_0 n I_{current}) - (B_Earth))}}
\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} = \frac{I}{m}
n = 20
Thus:
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 I_{current}) - (B_Earth))}}
Insert I = 0 Amp
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 * 0) - (B_Earth))}}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{((\mu_0 20 * 0) - (B_Earth))}}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} \frac{4 \pi^2}{-B_Earth}}
B earth: 5 x 10^-5
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
T = \sqrt{\frac{((80\mu_0) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
\mu_0 = 4pi * 10 ^-7
T = \sqrt{\frac{((80(4\pi * 10^{-7})) - (2*10^{-4})}{4 \pi^2} (-7.9 * 10^5)}
T = \sqrt{(-39.1) (-7.9 * 10^5)}
and:
T = \sqrt{3.08 * 10^7}
and:
T = 5553
Seems a bit big?
TFM