Completeness of basis in quantum mechanics

wowowo2006
Messages
13
Reaction score
0
In a QM course,
I learn that an operator can be represented by basis vectors
If the basis vector is complete, the following relation holds
There exist coefficient Mij such that
Sigma Mij |i > < j|. = I , |i> is the basis! and I is the identity matrix

But isn't that in linear algebra
We call the set of basis is complete when
Any vector can be expressed into their linear combination

I wonder why here we seems have 2 definition of completeness
 
Physics news on Phys.org
I recommend reading of Sakurai's Book on QM - read the introductory chapters.
 
I wonder why here we seems have 2 definition of completeness
There is only one definition if the two renderings are equivalent, right ? And they are equivalent!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top