Complex analysis proof with residue theorem, argument principle

nate9228
Messages
42
Reaction score
0

Homework Statement



Let C be a regular curve enclosing the distinct points w1,..., wn and let p(w)= (w-w1)(w-w2)...(w-wn). Suppose that f(w) is analytic in a region that includes C. Show that P(z)= (1/2\pii)∫(f(w)\divp(w))\times((p(w)-p(z)\div(w-z))\timesdw
is a polynomial of degree n-1 with P(wk) = f(wk), k= 1,2,...

Homework Equations





The Attempt at a Solution


So far I know this has something to do with the argument principle and possibly the residue theorem. I believe the inside of the integral reduces to (p'(w)\divp(w))\timesf(w)dw, which is why I think the argument principle pertains to this problem. After this I am not sure what to do. This problem is from Bak and Newman Complex Analysis, third edition, chapter 10, if anyone is familiar with the book.
 
Physics news on Phys.org
Wow, the code did not turn out at all how I thought it was going to. I apologize for this confusion; I used the symbols button and just assumed they would translate to standard notation.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top