Complex Analysis Properties Question

RJLiberator
Gold Member
Messages
1,094
Reaction score
63
Use properties to show that:
(question is in the attached picture)

Now, it is my understanding that due to properties you can express (sqrt(5)-i) as the sqrt((sqrt(5))^2+(-1)^2) which equals sqrt(6).
And (2zbar+5) can be represented as (2z+5).

But this would be sqrt(6)*(2z+5) which is NOT sqrt(3)*(2z+5)

Was there a typo in this problem? Or am I not thinking of something?

Thank you.
 

Attachments

  • Screen Shot 2015-06-16 at 9.54.51 PM.png
    Screen Shot 2015-06-16 at 9.54.51 PM.png
    8.5 KB · Views: 512
Physics news on Phys.org
RJLiberator said:
Use properties to show that:
(question is in the attached picture)

Now, it is my understanding that due to properties you can express (sqrt(5)-i) as the sqrt((sqrt(5))^2+(-1)^2) which equals sqrt(6).
And (2zbar+5) can be represented as (2z+5).

But this would be sqrt(6)*(2z+5) which is NOT sqrt(3)*(2z+5)

Was there a typo in this problem? Or am I not thinking of something?

Thank you.

There are some absolute value signs missing, but yes, I think there is a typo.
 
  • Like
Likes RJLiberator
Excellent. After performing the operations, I felt like I had a good understanding of it. This seems to confirm my suspicions :). Kind regards for your help tonight.
 
RJLiberator said:
Now, it is my understanding that due to properties you can express (sqrt(5)-i) as the sqrt((sqrt(5))^2+(-1)^2) which equals sqrt(6).
What you wrote here is very far from true. The real number ##\sqrt{6}## obviously can't be equal to ##\sqrt{5}-i##, which isn't even real. But Dick said something about missing absolute value signs, so I suppose you could be talking about something like this: For all ##z,w\in\mathbb C##, if ##\operatorname{Re}\bar z w=0##, then ##|z+w|^2=|z|^2+|w|^2##. This implies that ##|\sqrt{5}-i|^2=|\sqrt{5}|^2+|-i|^2=5+1=6##, and this implies that ##\sqrt{6}=|\sqrt{5}-i|##.
 
  • Like
Likes RJLiberator
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top