Complex conjugate on an inner product

bugatti79
Messages
786
Reaction score
4

Homework Statement



Consider the set ##C^2= {x=(x_1,x_2):x_1,x_2 \in C}##.

Prove that ##<x,y>=x_1 \overline{y_1}+x_2 \overline{y_2}## defines an inner product on ##C^2##

Homework Equations


The Attempt at a Solution



##<,y>=\overline {<y,x>}##

##= \overline {y_1x_1} + \overline {y_2x_2}##

I think I need some other information to continue...?

Thanks
 
Physics news on Phys.org
bugatti79 said:

Homework Statement



Consider the set ##C^2= {x=(x_1,x_2):x_1,x_2 \in C}##.

Prove that ##<x,y>=x_1 \overline{y_1}+x_2 \overline{y_2}## defines an inner product on ##C^2##

Homework Equations


The Attempt at a Solution



##<,y>=\overline {<y,x>}##

##= \overline {y_1x_1} + \overline {y_2x_2}##

I think I need some other information to continue...?

Thanks

verify that this satisfies the definition of an inner product:

##<x,y>=\overline{<y,x>}##
##<x+y,z>=<x,z>+<y,z>##
##<ax,z>=a<x,z>##
##<x,x> \geq 0##
##<x,x>=0 \iff x=0##

for all x,y,z in ##C^2## and for all complex scalars a
 
CornMuffin said:
verify that this satisfies the definition of an inner product:

##<x,y>=\overline{<y,x>}##
##<x+y,z>=<x,z>+<y,z>##
##<ax,z>=a<x,z>##
##<x,x> \geq 0##
##<x,x>=0 \iff x=0##

for all x,y,z in ##C^2## and for all complex scalars a

I can verify the above for x,y,z in ##R^2## but don't know how to extend to the complex field...? Especially the first axiom..

THanks
 
bugatti79 said:
I can verify the above for x,y,z in ##R^2## but don't know how to extend to the complex field...? Especially the first axiom..

THanks

##\overline{x}## means the complex conjugate of ##x##, that is if ##x=a+ib## for ##a,b \in \mathbb{R}## then ##\overline{x} = a-ib##

find ##\overline{<y,x>}## and show that it simplifies to ##x_1\overline{y_1} + x_2\overline{y_2}=<x,y>##
 
bugatti79 said:
##\overline {<y,x>}##

##= \overline {y_1x_1} + \overline {y_2x_2}##
This is wrong. Use the definition you posted, and you'll see that.
 
CornMuffin said:
##\overline{x}## means the complex conjugate of ##x##, that is if ##x=a+ib## for ##a,b \in \mathbb{R}## then ##\overline{x} = a-ib##

find ##\overline{<y,x>}## and show that it simplifies to ##x_1\overline{y_1} + x_2\overline{y_2}=<x,y>##

Fredrik said:
This is wrong. Use the definition you posted, and you'll see that.

1) ##<x,y>=\overline{<y,x>}=\overline{ y_1\overline{x_1}}+\overline { y_2\overline{x_2}}=\overline{y_1}x_1+\overline{y_2}x_2##

2) ##<x+y,z>=(x_1+y_1)\overline{z_1}+(x_2+y_2) \overline{z_2}=x_1\overline {z_1}+y_1\overline {z_1}+x_2\overline {z_2}+y_2\overline {z_2}=<x,z>+<y,z>##

3)##<\alpha x,y>= \alpha x_1 \overline{y_1}+\alpha x_2 \overline{y_2}=\alpha(x_1 \overline{y_1}+x_2\overline{y_2})=\alpha<x,y>##

4)##<x,x>=x_1 \overline{x_1}+x_2 \overline{x_2}=|x_1|^2+|x_2|^2>=0## since by definition ##z \overline{z}=|z|^2>=0## and ##<x,x>=0## iff x=0, that is x1=x2=0...

thanks
 
Last edited:
2-4 are fine. In part 1, the first equality you wrote down is the one you're trying to prove. This is of course not OK. Your string of equalities should end with =<x,y>, not begin with <x,y>=. The best way to do this is one step at a time, like this:
$$\overline{\langle y,x\rangle} =\overline{y_1\overline{x_1}+y_2\overline{x_2}} =\overline{y_1\overline{x_1}} +\overline{y_2\overline{x_2}} =\overline{y_1}\,\overline{\overline{x_1}} +\overline{y_2}\,\overline{\overline{x_2}}
= \overline{y_1}x_1+\overline{y_2}x_2 =x_1\overline{y_1}+x_2\overline{y_2} =\langle x,y\rangle$$.
 
Last edited:
Thanks Fredrik for the clarification.
 
Back
Top