- 6,735
- 2,431
Homework Statement
Solve cosz = 2i , z\in \mathbb{C}
The Attempt at a Solution
e^{iz}+e^{-iz} = 4i
t=e^{-z}
t+t^{-1}=4i \Rightarrow t^{2}-4it+1=0
t = (2 \pm \sqrt{5})i
log(e^{-z}) = logt
z = x + yi;x,y \in \mathbb{R}
log(e^{-z}) = log(e^{-y+ix}) = -y +xi + 2\pi ni; n\in\mathbb{Z}
logt = log((2 \pm \sqrt{5})i) = ln|(2 \pm \sqrt{5})| \pm \frac{\pi}{2} + 2\pi hi, h \in \mathbb{Z}
\Rightarrow y= -ln|(2 \pm \sqrt{5})|
\Rightarrow x= \pm \frac{\pi}{2} + 2\pi p, p \in \mathbb{Z}
z= \pm \frac{\pi}{2} + 2\pi p -iln|(2 \pm \sqrt{5})|
answer in book:
z = \pm\lbrace \frac{\pi}{2} -iln(2 + \sqrt{5})\rbrace+2\pi n, n\in \mathbb{Z}<br />
Were did I do wrong? :S