KleZMeR
- 125
- 0
I'm solving two different definite integrals of functions
\frac{sin(z)}{z} and \frac{cos(z)}{e^z+e^{-z}}
with complex analysis and the residue theorem, and in the solutions they replace both
sin(z) and cos(z) with e^{iz}
why is this possible?
\frac{sin(z)}{z} and \frac{cos(z)}{e^z+e^{-z}}
with complex analysis and the residue theorem, and in the solutions they replace both
sin(z) and cos(z) with e^{iz}
why is this possible?