Complex Numbers - Forms and Parts

dotNet
Messages
2
Reaction score
0
Hi, I have a complex number and understand that the rectangular form of the number is represented by

s = σ + jω, where σ is the real part and jω is imaginary.

I am having trouble locating them in the number below:
20koboi.png


I know that "2" is a real number, and the numerator is imaginary along with j*2*pi*k. Since the numerator is dividing both the elements at the bottom, does this number have a real and imaginary part? (This is where I am a little confused).

My guess would be that σ = 2 and the rest is imaginary.

If I could figure out what parts are real and imaginary, I can go on to find the rectangular form and the polar form.

Thanks
 
Physics news on Phys.org
dotNet said:
Hi, I have a complex number and understand that the rectangular form of the number is represented by

s = σ + jω, where σ is the real part and jω is imaginary.

I am having trouble locating them in the number below:
20koboi.png


I know that "2" is a real number, and the numerator is imaginary along with j*2*pi*k. Since the numerator is dividing both the elements at the bottom, does this number have a real and imaginary part? (This is where I am a little confused).

My guess would be that σ = 2 and the rest is imaginary.

If I could figure out what parts are real and imaginary, I can go on to find the rectangular form and the polar form.

Thanks

Euler's relation e^ix = cos(x) + i*sin(x) vastly simplifies the exponential in the numerator. Cos and sin have period 2pi so the numerator is -1. Then multiply numerator and denominator by the conjugate of the denominator (assuming k is real). That leaves you with a real number in the denominator and a complex number in the numerator whose real and imaginary parts can be readily evaluated.

By the way, multiplying numerator and denominator by the conjugate of the denominator is the standard thing to do with this kind of problem.
 
Last edited:
dotNet said:
Hi, I have a complex number and understand that the rectangular form of the number is represented by

s = σ + jω, where σ is the real part and jω is imaginary.

I am having trouble locating them in the number below:
20koboi.png


I know that "2" is a real number, and the numerator is imaginary along with j*2*pi*k.
No, the numerator is NOT imaginary. In fact it is real- it is e^{j3\pi}= cos(3\pi)+ jsin(3\pi)= -1.
Since the numerator is dividing both the elements at the bottom, does this number have a real and imaginary part? (This is where I am a little confused).

My guess would be that σ = 2 and the rest is imaginary.

If I could figure out what parts are real and imaginary, I can go on to find the rectangular form and the polar form.

Thanks
 
Last edited by a moderator:
Just try a look into www.wolframalpha.com and enter

Exp[3 Pi I] / (2 + 2 Pi k I)

what is the Mathematica version of your formula
 
as others have suggested, evaluate the numerator at the specific angle (3pi), and then multiply the resulting fraction by:

\frac{2 - j2\pi k}{2 - j2\pi k} (= 1)

to make the denominator real.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top