Complex numbers Simultaneos Eqn

kukumaluboy
Messages
61
Reaction score
1

Homework Statement


1) 2w+iz = 3; 2) (3-i)w - z = 1 +3i
2wi - z = 3i; 3w - iw - z = 1 + 3i

Substract (2) from (1):

2wi - z - (3w-iw-z) = 3i - (1+3i)
2wi -3w +iw = -1
3iw - 3w = -1
3w(i-1) = -1
3w = -1/(i-1) = -0.5i - 0.5
w = -i/6 - 1/6

But the answer is i/6 + 1/6 for W
 
Physics news on Phys.org
kukumaluboy said:

Homework Statement


1) 2w+iz = 3; 2) (3-i)w - z = 1 +3i
2wi - z = 3i; 3w - iw - z = 1 + 3i

Substract (2) from (1):

2wi - z - (3w-iw-z) = 3i - (1+3i)
2wi -3w +iw = -1
3iw - 3w = -1
3w(i-1) = -1
3w = -1/(i-1) = -0.5i - 0.5
w = -i/6 - 1/6

But the answer is i/6 + 1/6 for W

##1/(i-1) = -(1/2)-(1/2)\,i##, so what is ##-1/(i-1)##?
 
  • Like
Likes kukumaluboy
THANKS!
*That feeling when you admit the book is not wrong =/ *
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top