Determining Steel String Diameter for Standing Wave Node

Firben
Messages
141
Reaction score
0

Homework Statement



The figure below shows a snapshot of a standing wave on a composite string. It is a node in the composite point. If the aluminium string has a diameter of 1.50 mm, which diameter does the steel string have ?

http://s716.photobucket.com/user/Pitoraq/media/Fys22222_zps61d0eb53.png.html


Homework Equations



V = √(F/ρ(length)) = √(F/ρA)


The Attempt at a Solution



Al: Node in both endpoints

y = f(ωt)*sin(kx) <==> sin(k1L1) = 0 <==>

2π/λ1*L1 = P1π <==>

λ1 = 2/p1*L1

Steel: Node in both endpoints


sin(K2L2) = 0 <==> 2π/λ2*L2 = P2π <==>

λ2 = 2/p2*L2

λ = v/f

λ1 = v/f1 = 2/p1*L1 <==> vp1/2L1 = f1 <==>

vp2/2L2 = f2

Same frequency

vp2/2L2 = vp1/2L1 <==>

√(F/ρ(al)A1)*P1/2L1 = √(F/ρ(Steel)A2)*P2/2L2 <==>


√(F/ρ(al)4πd1)*P1/2L1 = √(F/ρ(Steel)4πd2)*P2/2L2 , breaking out d2 <==>

d2 = ((p2)^2*(L1)^2*(ρ(Al))*d1)/((p1)^2*(L2)^2*ρ(Steel))

Where d1 = 0.0015
ρ(Al) = 2.7+ * 10^3/m^3
ρ(Steel) = 7.87*10^3/m^3
L1 = 0.3 m
L2 = 0.25 m

p2 = 5
p1 = 3

Are the nodes from the figure

when i put does values into the equation above i got 2.058 * 10^-3 m

In the answer it should be 1.76 mm
 
Physics news on Phys.org
I think if you are more careful writing the equations (especially the grouping under the square roots) you'll can see more clearly where the problem is. I'll rewrite some of it

Starting from:
Firben said:
Same frequency

vp2/2L2 = vp1/2L1 <==>

$$
\begin{align}
\frac{vp_2}{L_2} &= \frac{vp_1}{L_1} \\
\frac{p_2}{L_2} \sqrt{\frac{F}{\mu_2}} &= \frac{p_1}{L_1} \sqrt{\frac{F}{\mu_1}} \\
\frac{p_2}{L_2} \sqrt{\frac{F}{\pi(d_2/2)^2\rho_\mathrm{Steel}}}
&= \frac{p_1}{L_1} \sqrt{\frac{F}{\pi(d_1/2)^2\rho_\mathrm{Al}}} \\
\frac{p_2/L_2}{p_1/L_1} \sqrt{\frac{\rho_\mathrm{Al}}{\rho_\mathrm{Steel}}}
&= \frac{d_2}{d_1}
\end{align}
$$

d2 = ((p2)^2*(L1)^2*(ρ(Al))*d1)/((p1)^2*(L2)^2*ρ(Steel))

So it seems as if you forgot d1, d2 were inside the √ and as a result your p1, L1, p2, L2 got squared by accident.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top