How Do Right-Side Homotopies Affect Homotopy Equivalence?

  • Thread starter Thread starter Ben2
  • Start date Start date
  • Tags Tags
    Equivalence Map
Ben2
Messages
37
Reaction score
9
Homework Statement
"Show that the composition of homotopy equivalences X-->Y and Y-->Z is a homotopy equivalence X-->Z..."
Relevant Equations
F(x,t) = f_t(x)
"[A] map f: X-->Y is called a \mathbf{homotopy~equivalence} if there is a map g: Y-->X such that fg\cong\mathbb{1} and gf\cong\mathbb{1}," where "cong" means "is homotopic." "The spaces X and Y are said to be \mathbf{homotopy~equivalent}..." Additional definitions are in Hatcher, "Algebraic Topology", of which this is part of Exercise 3(a), p. 18. My difficulty is proving that if f\cong\mathbb{1} and h is another homotopy, then f = f\mathbb{1}h\congh. That is, how do we handle an arbitrary homotopy on the RIGHT? Does this involve "associativity" of homotopies? Thanks!
 
Physics news on Phys.org
Apologies for posting! With the conditions given, (hf)(gk) = h(fg)k\congh(\mathbb{1})k = hk\cong\mathbb{1} and (fh)(kg) = f(hk)g\congf\mathbb{1}g = fg\cong\mathbb{1}. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
 
Ben2 said:
Apologies for posting! With the conditions given, (hf)(gk) = h(fg)k\congh(\mathbb{1})k = hk\cong\mathbb{1} and (fh)(kg) = f(hk)g\congf\mathbb{1}g = fg\cong\mathbb{1}. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
Please wrap your Latex with ## or otherwise for easier reading.
 
Ben2 said:
Apologies for posting! With the conditions given, ##(hf)(gk) = h(fg)k\cong h(\mathbb{1})k = hk\cong\mathbb{1}## and## (fh)(kg) = f(hk)g\cong f\mathbb{1}g = fg\cong\mathbb{1}##. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top