latentcorpse
- 1,411
- 0
I have that g=L^2 \left( e^{-2U} \left( e^{2A} \left( -dt^2 + d \theta^2 \right) + R^2 dy^2 \right) + e^{2U} dx^2 \right) is the metric on my spacetime.
taking \{ t, \theta, x , y \} as a coordinate system for the manifol M, i can write this in matrix form as
g_{ab}=L^2 \left( \begin {array}{cccc} -{e}^{2 \left( A-U \right)}&0&0&0<br /> \\ \noalign{\medskip}0&{e}^{2 \left(A-U \right)}&0&0\\ \noalign{\medskip}0&0&{e}<br /> ^{2U}&0\\ \noalign{\medskip}0&0&0&{R}^{2}{e}^{-2U}\end {array}<br /> \right)
now i need to show the vacuum einstein equations for g are
\partial_t^2 R - \partial_{\theta}^2 R =0
\partial_t (R \partial_t U ) - \partial_{\theta} ( R \partial_{\theta} U ) =0
\partial_t^2 A - \partial_{\theta}^2 A = ( \partial_{\theta} U )^2 - ( \partial_t U)^2
and
\partial_{\theta} \partial_+ R = ( \partial_+ A)(\partial_+ R) - R ( \partial_+ U)^2
\partial_{\theta} \partial_- R = ( \partial_- A)( \partial_- R) - R ( \partial_- U )^2
where \partial_{\pm} = \partial_{\theta} \pm \partial_{t}
so i want to start by computing the christoffel symbols andyway.
this is done using \Gamma^{\sigma}_{\mu \nu} = \frac{1}{2} \displaystyle \sum_{\rho} g^{\sigma \rho} \left( \frac{ \partial g_{\nu \rho}}{\partial x^{\mu}} + \frac{ \partial g_{\mu \rho}}{\partial x^\nu} - \frac{ \partial g_{\mu \nu}}{ \partial x^\rho} \right)
however in previous examples I've worked with, \sigma, \mu, \nu, \rho \in \{ 1,2,3 \} but now i have a problem because of this fourth index due to the presence of time in my metric and i don't know how to deal with it. any advice?
taking \{ t, \theta, x , y \} as a coordinate system for the manifol M, i can write this in matrix form as
g_{ab}=L^2 \left( \begin {array}{cccc} -{e}^{2 \left( A-U \right)}&0&0&0<br /> \\ \noalign{\medskip}0&{e}^{2 \left(A-U \right)}&0&0\\ \noalign{\medskip}0&0&{e}<br /> ^{2U}&0\\ \noalign{\medskip}0&0&0&{R}^{2}{e}^{-2U}\end {array}<br /> \right)
now i need to show the vacuum einstein equations for g are
\partial_t^2 R - \partial_{\theta}^2 R =0
\partial_t (R \partial_t U ) - \partial_{\theta} ( R \partial_{\theta} U ) =0
\partial_t^2 A - \partial_{\theta}^2 A = ( \partial_{\theta} U )^2 - ( \partial_t U)^2
and
\partial_{\theta} \partial_+ R = ( \partial_+ A)(\partial_+ R) - R ( \partial_+ U)^2
\partial_{\theta} \partial_- R = ( \partial_- A)( \partial_- R) - R ( \partial_- U )^2
where \partial_{\pm} = \partial_{\theta} \pm \partial_{t}
so i want to start by computing the christoffel symbols andyway.
this is done using \Gamma^{\sigma}_{\mu \nu} = \frac{1}{2} \displaystyle \sum_{\rho} g^{\sigma \rho} \left( \frac{ \partial g_{\nu \rho}}{\partial x^{\mu}} + \frac{ \partial g_{\mu \rho}}{\partial x^\nu} - \frac{ \partial g_{\mu \nu}}{ \partial x^\rho} \right)
however in previous examples I've worked with, \sigma, \mu, \nu, \rho \in \{ 1,2,3 \} but now i have a problem because of this fourth index due to the presence of time in my metric and i don't know how to deal with it. any advice?
Last edited: