Compute Limit w/ L'Hospital: Is This Right?

  • Thread starter Thread starter endeavor
  • Start date Start date
  • Tags Tags
    Limits
endeavor
Messages
174
Reaction score
0

Homework Statement


Compute the limit \lim_{x \rightarrow 0} (1 + 3x)^{3/x}.

Homework Equations


The Attempt at a Solution



\lim_{x \rightarrow 0} (1 + 3x)^{3/x} = \lim_{x \rightarrow 0} e^{\frac{3}{x} \ln (1 + 3x)}
\lim_{x \rightarrow 0} \frac{3}{x} \ln (1 + 3x) = 3 \lim_{x \rightarrow 0} \frac{ln (1 + 3x)}{x}
= 3 \lim_{x \rightarrow 0} \frac{\frac{3}{1 + 3x}}{1}
= 3 \lim_{x \rightarrow 0} \frac{3}{1 + 3x}
=9
\lim_{x \rightarrow 0} (1 + 3x)^{3/x} = e^9

I just need to know if this is right.
 
Last edited:
Physics news on Phys.org
It is just fine.
 
The answer is right. Just plug in .01 or .001 into the limit using the calculator and compare it to the exact value.
 
Or You could have manipulated the definition of the exponential: e^a=\lim_{x \rightarrow \inf} (1+\frac{a}{x})^x

Rewrite \lim_{x \rightarrow 0} (1 + 3x)^{3/x} as \lim_{x \rightarrow 0} (1 + \frac{3}{1/x})^{3(1/x)}
The limit of 1/x as 0 approaches zero is the same as x appracohes infinity. So we can rewrite the limit as
\lim_{x \rightarrow \inf} (1 + 3/x)^{3x} = \lim_{x \rightarrow \inf}( (1 + 3/x)^x )^3 which is the definiton of e^3, then cubed, getting out e^9 as required.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top