Compute the surface charge density on the belt

Black-Mind
Messages
7
Reaction score
0
I need the answer to this question

A charge belt, 50cm wide, travels at 40m/s between a source of charge and a charging object at a rate corresponding to 100microA . Compute the surface charge density on the belt

Some one told me the answer may be 5 microC/m2 but how ??
 
Physics news on Phys.org


You will need to put in some effort if you want help. For example, list some of the equations you have been trying and show some work.
 


I try this but i don't no if it is right
J=I/A=100*10^-9 /0.5*1
also J=(ne) V
then ne(q)=J/v
and then i take the q as the surface charge density
and it well = 5*10^-9
 


The units do not come out right at all in that last equation.

You know the current and that is just dq/dt. That is the same as saying dq charge passes by in a time dt. So draw a picture of how much charge passes by in a time dt, knowing the width of the belt and how fast it is moving.
 


Thanx Nickjer For your help I finally get it
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.

Similar threads

Back
Top