Computing cone equation using data points

AI Thread Summary
The discussion revolves around determining the number of right circular cones that can pass through three given points in 3D space, with specific angles between the conical surface and the axis. The problem can also be framed as finding points on the surfaces of three cones whose apexes are the three points. Participants suggest using geometric relationships to derive equations for the cone's axis and apex. There is also a query about handling inaccuracies in data points, with a suggestion to explore computing methods for solutions. The conversation emphasizes the need for clarity on the definition of a "vertical" cone in this context.
Saeid
Messages
2
Reaction score
0
Dear All
I have a problem that can be represented in two different forms.
Problem is related to propagation of waves in 2D space with respect of time.
I have three random points in the 3D Space.
How many right circular, infinite cones with specific predetermined angle between conical surface and axis we can find that passes these three points.
I need the 3D coordinates of the apex point.
Three points are in one side of cone. I.e., if we draw a plane perpendicular to axis of cone that meets the axis in apex point, all three points will fall in one side of the plane.
Another representation of the problem is, if I draw three right circular, infinite cones with specific predetermined angle between conical surface and axis which their apex points are these three points in the 3D space, how many points I can find that belongs to surface of these three cones. Or, in how many points these three cones coincide with each other.
What will be the result if I use four different points in the space?
If my points (data points) have noise (inaccuracy) what solutions or method exists or you suggest for solving it?


Thank you
 
Physics news on Phys.org
Welcome to PF!

Hi Saeid! Welcome to PF! :smile:

Hint: if the points are A B and C, and the axis of the cone is the line L, and the apex is at the point X on L, and the half-angle of the cone is θ, then the equation relating the lines XA XB XC and L is … ? :smile:
If my points (data points) have noise (inaccuracy) what solutions or method exists or you suggest for solving it?

No idea! It might be better to ask that question in the computing part of the forum. :smile:
 
tiny-tim said:
Hi Saeid! Welcome to PF! :smile:

Hint: if the points are A B and C, and the axis of the cone is the line L, and the apex is at the point X on L, and the half-angle of the cone is θ, then the equation relating the lines XA XB XC and L is … ? :smile:


No idea! It might be better to ask that question in the computing part of the forum. :smile:
Thanks tiny-tim
Another hint, required cone is vertical.
 
right circular cones

Saeid said:
Thanks tiny-tim
Another hint, required cone is vertical.

Hi Saeid! :smile:

What do you mean by "vertical"? :confused:

The question only says "right circular" … in other words, an "ordinary" cone.

See http://en.wikipedia.org/wiki/Cone_(geometry) :
In common usage in elementary geometry, however, cones are assumed to be right circular, where right means that the axis passes through the centre of the base (suitably defined) at right angles to its plane, and circular means that the base is a circle. Contrasted with right cones are oblique cones, in which the axis does not pass perpendicularly through the centre of the base.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top