Is (u(x,t))^2 the Same as u^2(x,t)?

  • Thread starter Thread starter spoonyluv
  • Start date Start date
  • Tags Tags
    Confused
spoonyluv
Messages
9
Reaction score
0
this is going to sound really dumb, but here is my questions anyways:

is (u(x,t))2 the same as u2(x,t)? I say yes, but I am not sure.

thanks

spoony.
 
Physics news on Phys.org
Yes, it is.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top