OK, I'm a little rusty on branch cuts and complex analysis but let me try to reconstruct what that answer is saying. Unfortunately I don't have whatever definition they refer to in terms of the log function.
First, what are they saying about ##\sqrt{z}## as z goes counterclockwise? ##\sqrt{z}## is a solution w to ##w^2 = z = re^{i\theta}## so ##\sqrt z = \sqrt r e^{i(\theta/2)}##. If ##\theta## is just under ##\pi##, ##\theta = \pi - \epsilon##, then we choose as the principal value for ##\sqrt z## the solution with argument, i.e. phase, ##(\pi/2) - (\epsilon/2)##. That makes it a value just to the right of the positive imaginary axis.
But as we increase the angle to something above ##\pi## to ##\theta = \pi + \epsilon##, dividing that by two would give an argument for ##\sqrt z## of just over ##\pi/2##. We choose instead to use the equivalent angle ##\theta = \pi + \epsilon - 2\pi = -\pi + \epsilon##. As a result, the argument of ##\sqrt z## is ##-(\pi/2) + (\epsilon/2)## and the square root is just to the right of the negative imaginary axis.
This accounts for the sentence in the solution "The function ##\sqrt z## jumps from values on the positive imaginary axis to their negatives as z crosses this line [the negative real axis] in the counterclockwise direction".
##\sqrt z## has a discontinuity when z crosses that line, when z goes from a negative real number with a small positive imaginary part to one with a small negative imaginary part. The cut line is where z is a negative real number. So ##\sqrt {z^2 + 1}## is going to have a jump where ##(z^2 + 1)## does that, where ##z^2 + 1## is a negative real number.
##z^2 + 1## has real values ##< 0## when ##z^2 < -1## which means z is an imaginary number ##i \alpha## with either ##\alpha > 1## or ##\alpha < -1##. So the cut lines for ##\sqrt{z^2 + 1}## are those locations on the imaginary axis, the part going from i up and from -i down. As before, when you cross those lines, the square root jumps from values with positive imaginary parts and values with negative imaginary parts.