I Confusion about the entropy of mixing

AI Thread Summary
The discussion revolves around the confusion regarding entropy changes when combining two identical boxes of ideal gas. Thermodynamics suggests that the total entropy remains the same when the partition is removed, while statistical mechanics indicates an increase in entropy due to the doubling of particles and volume, leading to more microstates. Clarification is provided that if the gases are identical, the entropy does not change, but if they are different, mixing entropy must be considered. The conversation highlights the advantages of using quantum statistical mechanics to resolve these discrepancies. Understanding these principles can simplify the learning process of statistical physics.
sha1000
Messages
123
Reaction score
6
TL;DR Summary
I'm seeking clarity on a seeming discrepancy between thermodynamics and statistical mechanics concerning the calculation of entropy when two identical boxes are combined. While thermodynamics suggests the combined entropy remains the same, a statistical mechanics viewpoint indicates a significant increase in entropy due to the increase in potential microstates. Can anyone help resolve this?
Hello everyone,

I am seeking some clarification regarding a question related to thermodynamics and statistical mechanics. My understanding is that when we combine two identical boxes with the same ideal gas by removing the wall between them, the resulting system's entropy stays the same. Essentially, the total entropy of the new system is the summation of the entropies of the original two boxes (i.e., Stot = S1 + S2 = 2S1 or 2S2).

However, from the standpoint of statistical mechanics, it appears that this entropy increase might not be as straightforward. Let's consider that we have N1 particles in a volume V1, which results in an entropy of S1. If we duplicate this system with a partition in place, we can simply double the entropy. But, if we remove the partition, we're left with 2N1 particles in a volume of 2V1. My confusion arises from the fact that when calculating the number of microstates in this new system, the entropy seems to increase significantly due to the doubled number of particles in the doubled volume.

Could anyone shed some light on this apparent discrepancy between these two views?

Thank you in advance for your help!
 
Science news on Phys.org
sha1000 said:
TL;DR Summary: I'm seeking clarity on a seeming discrepancy between thermodynamics and statistical mechanics concerning the calculation of entropy when two identical boxes are combined. While thermodynamics suggests the combined entropy remains the same, a statistical mechanics viewpoint indicates a significant increase in entropy due to the increase in potential microstates. Can anyone help resolve this?

Hello everyone,

I am seeking some clarification regarding a question related to thermodynamics and statistical mechanics. My understanding is that when we combine two identical boxes with the same ideal gas by removing the wall between them, the resulting system's entropy stays the same. Essentially, the total entropy of the new system is the summation of the entropies of the original two boxes (i.e., Stot = S1 + S2 = 2S1 or 2S2).

However, from the standpoint of statistical mechanics, it appears that this entropy increase might not be as straightforward. Let's consider that we have N1 particles in a volume V1, which results in an entropy of S1. If we duplicate this system with a partition in place, we can simply double the entropy. But, if we remove the partition, we're left with 2N1 particles in a volume of 2V1. My confusion arises from the fact that when calculating the number of microstates in this new system, the entropy seems to increase significantly due to the doubled number of particles in the doubled volume.

Could anyone shed some light on this apparent discrepancy between these two views?

Thank you in advance for your help!
If the gases in the two parts of the box are of identical particles (atoms/molecules), then the entropy doesn't change. If they are not identical there's mixing entropy. You get this right within statistical mechanics, using quantum theory. Anyway, quantum statistical mechanics is simpler than classical. If you know enough quantum theory, it's thus easier to learn statistical physics starting from quantum many-body theory and, for equilibrium, the maximum-entropy principle and take the classical limit to get the results of classical statistics. The same also holds for off-equilibrium statistical mechanics, where you can derive the Boltzmann(-Uehling-Uhlenbeck) equation via the Kadanoff-Baym equations of quantum many-body theory.
 
  • Like
Likes Lord Jestocost
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top