mehr1methanol
- 10
- 0
Conjecture Regarding Rotation of a Set by a Sequence of Angles.
Consider the following sequence, where the elements are rational numbers mulriplied by \pi:
(\alpha_{i}) = \hspace{2 mm}\pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/16,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/32,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/16,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/64,\hspace{2 mm} \pi/4,\hspace{2 mm} \cdots
Let K \subset ℝ^{2} be a compact set. Also let R_{\alpha_{i}} denote the rotation by \alpha_{i}.
Suppose R_{\alpha_{i}}K = \hspace{2 mm} K for each \alpha_{i} \in (\alpha_{i}).
Question: Is it true that for all \theta \in [0, 2\pi) R_{\theta}K = \hspace{2 mm} K.
Note:
If instead we had the sequence (n\alpha) where \alpha is an irrational number, it is trivial that the conjecture holds. This is trivial due to the following fact from the study of continued fractions:
Given any real number on a circle, it can be approximated arbitrarily close by multiples of an irrational number.
But if \alpha is a rational number this doesn't hold since after a finite number of rotations you will get back to where you started from. However in the question above we don't have rotations by a fixed rational number and the answer is not immediate!
Consider the following sequence, where the elements are rational numbers mulriplied by \pi:
(\alpha_{i}) = \hspace{2 mm}\pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/16,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/32,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/16,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/8,\hspace{2 mm} \pi/4,\hspace{2 mm} 3\pi/64,\hspace{2 mm} \pi/4,\hspace{2 mm} \cdots
Let K \subset ℝ^{2} be a compact set. Also let R_{\alpha_{i}} denote the rotation by \alpha_{i}.
Suppose R_{\alpha_{i}}K = \hspace{2 mm} K for each \alpha_{i} \in (\alpha_{i}).
Question: Is it true that for all \theta \in [0, 2\pi) R_{\theta}K = \hspace{2 mm} K.
Note:
If instead we had the sequence (n\alpha) where \alpha is an irrational number, it is trivial that the conjecture holds. This is trivial due to the following fact from the study of continued fractions:
Given any real number on a circle, it can be approximated arbitrarily close by multiples of an irrational number.
But if \alpha is a rational number this doesn't hold since after a finite number of rotations you will get back to where you started from. However in the question above we don't have rotations by a fixed rational number and the answer is not immediate!
Last edited: