Conservation of Angular Momentum on a Merry-Go-Round

AI Thread Summary
The discussion revolves around calculating angular momentum and forces related to a person jumping onto a spinning merry-go-round. The initial angular momentum of the merry-go-round is determined using its moment of inertia and angular speed. The person’s angular momentum is calculated just before they jump on, considering their mass and tangential velocity. The challenge arises in determining the centripetal force required for the person to hold on after jumping on, which involves understanding the new angular speed. Finally, the linear velocity of the person upon exiting the ride is calculated based on the angular velocity at the moment of release.
mrshappy0
Messages
97
Reaction score
0

Homework Statement


A merry-go-round with a a radius of R = 1.94 m and moment of inertia I = 184 kg-m2 is spinning with an initial angular speed of ω = 1.66 rad/s. A person with mass m = 76 kg and velocity v = 4.1 runs on a path tangent to the merry-go-round. Once at the merry-go-round they jump on and hold on to the rim of the ride.
1)What is the magnitude of the initial angular momentum of the merry-go-round? 2)What is the magnitude of the initial angular momentum of the person 2 meters before they jump on the merry-go-round? 3)What is the magnitude of the initial angular momentum of the person just before they jump on to the merry-go-round? 4)What is the angular speed of the merry-go-round after the person jumps on? 5)Once the merry-go-round travels at this new angular speed, what force does the person need to hold on? 6)Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.
What is the linear velocity of the person right as they leave the merry-go-round?

Homework Equations



L=Iω
L=mvR

The Attempt at a Solution



So I was easily able to answer all the questions up to questions 5, and 6. I don't even know where to start with 5. It seems like it requires more than just angular momentum. #6 doesn't seem bad. My thought is that it would be the same speed regardless of where the person let's go of the ride. So I would just calculate the linear velocity from the angular velocity that i got from the earlier parts. This would be the speed he would exit the merry-go-round.
 
Physics news on Phys.org
I agree with all you say. In #5, I think you are asked for the centripetal force that must be overcome by hanging on.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top