Conservation Of Energy, Block Sliding Down Incline Onto Spring.

AI Thread Summary
A block of mass m slides down a frictionless incline at angle θ, striking a spring with force constant k after traveling a distance l. The conservation of energy principle is applied, equating gravitational potential energy and spring potential energy to find the compression distance x of the spring. The equations derived include the gravitational potential energy at height h and the kinetic energy just before hitting the spring. The solution leads to a quadratic equation that can be solved for x in terms of known quantities k, m, θ, l, and g. The final expression for x is x = (mgsinθ ± √[mgsinθ(mgsinθ+2kl)]) / k.
Creepypunguy
Messages
8
Reaction score
0

Homework Statement


CNf8k2D.png

A block of mass m starts from rest at a height h and slides down a frictionless plane inclined at angle θ with the horizontal, as shown below. The block strikes a spring of force constant k.
Find the distance the spring is compressed when the block momentarily stops. (Let the distance the block slides before striking the spring be l. Use the following as necessary: m, θ, k, l, and g.)

Homework Equations


Conservation of Energy:
GPE : U = mgh
K = (1/2)mv2
Spring = (1/2)kx2


The Attempt at a Solution



My Diagram:
QJ9jkix.jpg

Let H = l*sinθ
Let h = x*sinθ

Moment 1: E = mg(H+h) = mgsinθ(l+ x)

Moment 2: E = (1/2)mv2 + mgh = (1/2)mv2 + mgx*sinθ

Moment 3: E = (1/2)kx2

-------- Attempts to get rid of x2 led to
x = h/sin
(1/2)k(h/sinθ)2 = mgsinθ(l+ x) ;;;
(kh2/2sin2θ) = mgsinθ(l+ x) ;;;
(kh2/2) = mglsin3θ + mgxsin3θ ;;;
(kh2/2) - mglsin3θ = mgxsin3θ ;;;

x = k*h2/2mgsin3θ - l
 
Physics news on Phys.org
Creepypunguy said:
Moment 1: E = mg(H+h) = mgsinθ(l+ x)

Moment 2: E = (1/2)mv2 + mgh = (1/2)mv2 + mgx*sinθ

Moment 3: E = (1/2)kx2
This is good.

-------- Attempts to get rid of x2 led to
x = h/sin
(1/2)k(h/sinθ)2 = mgsinθ(l+ x) ;;;
(kh2/2sin2θ) = mgsinθ(l+ x) ;;;
(kh2/2) = mglsin3θ + mgxsin3θ ;;;
(kh2/2) - mglsin3θ = mgxsin3θ ;;;

x = k*h2/2mgsin3θ - l
Don't try to express things in terms of "h"--that's an unknown directly related to "x".

Hint: Just compare moments 1 and 3. Solve that equation!
 
As h=xsinθ, your last equation does not give x explicitly in terms of the known quantities, k, m, θ, L, and g.

ehild
 
So by solving equations 1 and 3 I got
mglsinθ+mgxsinθ = (1/2)kx2
0 = (k/2)x2 - mgsinθx - mglsinθ
quadratic formula

x = (mgsinθ ± √[mgsinθ(mgsinθ+2kl)] ) / k
 
It is all right now.

ehild
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top