Conservation of linear momentum & center of mass

AI Thread Summary
The discussion centers on the conditions under which the center of mass (c.o.m) frame of reference remains inertial when two cars accelerate. It is established that for the c.o.m to be inertial, the net external forces must equal zero, leading to the equation m1a1 + m2a2 = 0. This means that the cars exert equal and opposite forces on each other, consistent with Newton's Third Law. The conversation also clarifies that a frame is considered inertial as long as it is not accelerating, even if external forces like friction are present, as long as the cars maintain constant velocities initially. Ultimately, linear momentum is conserved in this scenario, as the internal forces cancel out, allowing observers in the c.o.m frame to interpret the situation without needing fictitious forces.
yoni162
Messages
16
Reaction score
0

Homework Statement


Two cars are driving along the road at constant speeds V1, V2. At t=0 they begin to accelerate with constant acceleration a1, a2. Under what circumstances is the center of mass frame of reference inertial?

Homework Equations


Fext=0 ==> change in momentum=0

The Attempt at a Solution


It's known that if there are no external forces acting on a system, the momentum is conserved. The same applies if there are external forces present, but they cancel each other so that the net external force is 0 (correct?). Now, from the center of mass (c.o.m) frame of reference, when the momentum is conserved, the total momentum is 0. Would that apply if despite the fact that there are external forces acting on the cars, if with their acceleration, the velocity of the c.o.m is kept the same (thus making it inertial)? Or is Fext=0 necessary in order for that to happen?
 
Physics news on Phys.org
You are on the right track, so I will help you see through this. Suppose you are on a skateboard moving along at the velocity of the center of mass before the cars start accelerating. Now at t = 0 they start accelerating. How must the accelerations of the cars be related for you to say that Newton's Laws are obeyed and you need no fictitious external force to explain what you see?
 
kuruman said:
You are on the right track, so I will help you see through this. Suppose you are on a skateboard moving along at the velocity of the center of mass before the cars start accelerating. Now at t = 0 they start accelerating. How must the accelerations of the cars be related for you to say that Newton's Laws are obeyed and you need no fictitious external force to explain what you see?

OK I don't know if that's what you were going for, but I said: in order for the c.o.m frame of reference to remain inertial, we need to have the the net external forces=0.
I know that the net external forces is the velocity of the c.o.m divided by the sum of the masses, and I want it to be 0, meaning (in a one-dimensional case):

m1a1+m2a2=0

Is that true?

Also, how do I explain the fact that the original frame of reference is inertial to begin with, considering there's friction acting on the cars? Or do I say that because V is constant (for each car), the net force is 0 so there's really no problem here, even though the forces are external?
 
yoni162 said:
I know that the net external forces is the velocity of the c.o.m divided by the sum of the masses, and I want it to be 0, meaning (in a one-dimensional case):

m1a1+m2a2=0

Is that true?

It is. If the above condition is satisfied, the center of mass does not accelerate, i.e. it is an inertial frame. Furthermore, an observer in that frame will interpret the above condition to mean that the two cars exert equal and opposite forces on each other in accordance with Newton's 3rd Law, i.e. all forces appear to be internal to the two-car system.

Also, how do I explain the fact that the original frame of reference is inertial to begin with, considering there's friction acting on the cars? Or do I say that because V is constant (for each car), the net force is 0 so there's really no problem here, even though the forces are external?

Correct. A frame is inertial as long as it is not accelerating. When both cars are moving at constant velocity, their center of mass is not accelerating.
 
One more thing I wanted to ask..is there conservation of linear momentum in this case? Since the forces acting on the cars aren't internal forces after all..
 
This is a philosophical question. If you define, strictly, that momentum is conserved as long as the center of mass does not accelerate, yes, linear momentum is conserved. The non-conservation of linear momentum when external forces act on the system comes about when internal forces act in pairs. Here, if m1a1+m2a2=0, internal forces cancel in pairs. Therefore, by the strict definition, linear momentum is conserved. An observer in the CM frame will not be able to tell otherwise although he/she may have to account in some way or another for the action-reaction apparent force between the cars. In accelerating frames, one has to invent fictitious external forces; this is a special case where one has to invent a fictitious internal force.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top