Conservation of momentum of a boat

AI Thread Summary
The discussion focuses on a physics problem involving the conservation of momentum and the center of mass of a boat and a person. The initial calculations incorrectly treated the scenario as a momentum conservation problem rather than a center of mass issue. Key insights highlight that the center of mass must remain fixed in the absence of external forces, leading to the conclusion that the boat moves 1.04 meters when the person walks to the front. The error stemmed from miscalculating forces and not considering the horizontal movement of the person. Ultimately, the correct approach involves calculating the center of mass to determine the boat's displacement.
Chiara
can u please tell me what i did wrong?
A 70 Kg person stands at the back of a 200 Kg boat of length 4 m that floats on stationary water. he begins to walk toward the front of the boat. When he gets to the front how far back will the boat have moved? (neglect the resistence of water)

The initial momentum is 0 both for the person and the boat since they are still. As the person begins to walk his momentum changes by an amount proportional to the force exerted on the boat to move forward:
§p=F*§t where §=change
p= momentum
t= time
§p=(70)(9.8)*§t
this §p has to be equal and opposite in sign to the §p of the boat for the law of conservation of momentum.
(70)(9.8)*§t=(200)a*§t where a is the acceleration of the boat.
a=3.43m/s2
now we can calculate the relationship between the space the person moves through and the space the boat moves
s=Vt+(1/2)at^2 that is, since the initial velocity is0 s=(1/2)at^2
s(person)=(1/2)(9.8)§t^2
s(boat)= (1/2)/(3.43)§t^2
therefore s(person)/s(boat)= 2.86
2.86=4m/(total s of the boat)
total distance the boat moves=1.4 m
the answer given in the book is 1.04 and not 1.4
Please, tell me what I did wrong!
 
Physics news on Phys.org
Hi,

You have not considered the Centre of Mass of the system.
Consider the mass of the man to be m, mass of the boat to be M,
velocity of the man to be u and velocity of the centre of mass of the
man-boat system to be v.

The velocity of the boat gets adjusted to the velocity of the man walking
on the boat.

Therefore,

(M+m)*v = m*u.

Thus,

u = v*(1+(M/m)). Calculate the time taken for the man to walk the
length of the boat (4m) = t.

In this time the boat travels a distance of (v*t) m.

Note: use the ratio of u/v in order to solve the problem (since the value of the
boat velocity is not given)

Hope u got ur solution...


Sridhar
 
One major mistake you made was in calculating the force as the force of gravity. The man is walking horizontally, not vertically!
Since the force applied would depend upon the resistance of the water, which is not given, I don't see any good way of calculating the force applied.

sridhar_n's suggestion- Calculating the center of mass both before and after the motion- is what I would recommend. Since there is no external force, the center of mass should remain fixed.
 
I know I'm probably a few months late and I doubt you need the answer anymore, but I'll post this in case someone else comes across a similar problem.

You were going in the wrong direction with your solution. This is not a conservation of momentum problem; it is a center a mass problem. HallsOfIvy was correct to say that since there are no external forces acting on the system, the center of mass remains the same. Therefore, you need to determine how the man walking across the boat changes the center of mass, and how the boat will move to compensate.

To calculate the center of mass of a system:

(m1*x1 +...+ mn*xn) / M

where n is the number of particles within the system and M is the total mass of the system.

The center of mass in your problem is (4m*70kg) / (200kg+70kg) = 1.04m from 0, the starting position. The boat therefore moves 1.04m.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top