Constraint on Thevenin impedance

AI Thread Summary
In linear circuits with only independent sources, the real part of the Thevenin impedance (Z_t) is generally non-negative. However, in circuits that include dependent sources, the Thevenin resistance can be negative. This distinction is crucial for understanding the behavior of different circuit configurations. The discussion emphasizes the importance of linear algebra and impedance matrices in analyzing these circuits. Overall, the positivity of the real part of Z_t is not universally applicable when dependent sources are present.
PatrickCummin
Messages
1
Reaction score
0
Let's say we have a circuit composed of simple linear circuit elements (resistors, inductors and capacitors). Now we calculate the Thevenin equivalent circuit for some load within this circuit, and we determine the Thevenin impedance, Z_t.

My question is this: Is it generally the case that the real part of Z_t is positive (Re Z_t greater than or equal to zero)? In particular, has this been proven to be generally the case?

Thanks for any help, Patrick
 
Engineering news on Phys.org
Last edited by a moderator:
PatrickCummin said:
Let's say we have a circuit composed of simple linear circuit elements (resistors, inductors and capacitors). Now we calculate the Thevenin equivalent circuit for some load within this circuit, and we determine the Thevenin impedance, Z_t.

My question is this: Is it generally the case that the real part of Z_t is positive (Re Z_t greater than or equal to zero)? In particular, has this been proven to be generally the case?

Thanks for any help, Patrick

Hi Patrick. The simple answer is that for linear circuits containing only independent sources then yes the real part of the Thevenin impedance is non-negative. However for circuits containing dependent sources the Thevenin resistance may be negative.
 
Last edited:
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Back
Top