arneolsen
- 1
- 0
Hello, I've allways wondered how to get to polar coordinates from cartisan coordinates. I took a course in fluid mechanics but we never learned how to get the continuity equation from cartisan to polar. I know you can use physics to derive the polar equation, but I want to do it just by using mathematics and the cartisan equation.
In cartisan the equation is
\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}=0
by using:
x=r*cos(\theta)\\<br /> y = r*sin(\theta)
I get:
<br /> \begin{pmatrix}<br /> \frac{dx}{dt} \\<br /> \frac{dy}{dt}\end{pmatrix}<br /> <br /> =<br /> \begin{pmatrix}<br /> V_{x} \\<br /> V_{y}\end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> cos(\theta) & -r*sin(\theta) \\<br /> sin(\theta) & r*cos(\theta)\end{pmatrix}<br /> *<br /> \begin{pmatrix}<br /> V_{r} \\<br /> V_{\theta}\end{pmatrix}<br />, I have defined: <br /> \begin{pmatrix}<br /> \frac{dr}{dt} \\<br /> \frac{d\theta}{dt}\end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> V_{r} \\<br /> V_{\theta}\end{pmatrix}<br />
This gives:
V_{x}=cos(\theta)*V_{r}-r*sin(\theta)*V_{\theta} and
V_{y}=sin(\theta)*V_{r}+r*cos(\theta)*V_{\theta}
Now my problem arises, I do not see how I am supposed to calculate:
\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}=<br /> \frac{\partial (cos(\theta)*V_{r}-r*sin(\theta)*V_{\theta})}{\partial x} + <br /> \frac{ \partial (sin(\theta)*V_{r}+r*cos(\theta)*V_{\theta}) }{\partial y}<br />
Can you guys help me how to end this? It is supposed to be at the end:
<br /> \frac{1}{r}\frac{\partial}{\partial r}(r*V_{r})<br /> +\frac{1}{r}\frac{\partial}{\partial \theta}(V_{\theta})=0<br />
In cartisan the equation is
\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}=0
by using:
x=r*cos(\theta)\\<br /> y = r*sin(\theta)
I get:
<br /> \begin{pmatrix}<br /> \frac{dx}{dt} \\<br /> \frac{dy}{dt}\end{pmatrix}<br /> <br /> =<br /> \begin{pmatrix}<br /> V_{x} \\<br /> V_{y}\end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> cos(\theta) & -r*sin(\theta) \\<br /> sin(\theta) & r*cos(\theta)\end{pmatrix}<br /> *<br /> \begin{pmatrix}<br /> V_{r} \\<br /> V_{\theta}\end{pmatrix}<br />, I have defined: <br /> \begin{pmatrix}<br /> \frac{dr}{dt} \\<br /> \frac{d\theta}{dt}\end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> V_{r} \\<br /> V_{\theta}\end{pmatrix}<br />
This gives:
V_{x}=cos(\theta)*V_{r}-r*sin(\theta)*V_{\theta} and
V_{y}=sin(\theta)*V_{r}+r*cos(\theta)*V_{\theta}
Now my problem arises, I do not see how I am supposed to calculate:
\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}=<br /> \frac{\partial (cos(\theta)*V_{r}-r*sin(\theta)*V_{\theta})}{\partial x} + <br /> \frac{ \partial (sin(\theta)*V_{r}+r*cos(\theta)*V_{\theta}) }{\partial y}<br />
Can you guys help me how to end this? It is supposed to be at the end:
<br /> \frac{1}{r}\frac{\partial}{\partial r}(r*V_{r})<br /> +\frac{1}{r}\frac{\partial}{\partial \theta}(V_{\theta})=0<br />
Last edited: