Solving for Parameter a in a Piecewise Function

azatkgz
Messages
182
Reaction score
0

Homework Statement



Find all values of the parameter a>0 such that the function

f(x)=\left\{\begin{array}{cc}\frac{a^x+a^{-x}-2}{x^2},x>0\\3ln(a-x)-2,x\leq0\end{array}\right



The Attempt at a Solution



\lim_{x\rightarrow 0}\frac{a^x+a^{-x}-2}{x^2}=0

0=3ln(a-0)-2\rightarrow a=e^{2/3}
 
Physics news on Phys.org
Why should the limit value be 0?? :confused:

All that is required is that AT x=0, both expressions should attain the same value!

Now, consider the function's expression for the non-positives.
Clearly, its limit at x=0 is 3ln(a)-2.
Thus, you are to determine those values of "a" so that the limiting value of the function expression for the positives equals 3ln(a)-2 as well.
 
ok
\lim_{x\rightarrow 0}\frac{a^x+a^{-x}-2}{x^2}=\frac{ln^2a}{2}
by L'Hopital Rule

\frac{ln^2a}{2}=3ln(a)-2

ln^2a-4lna+4=0
 
Last edited:
The limit of the upper expression should be \ln^{2}(a)

Thus, you have the quadratic in ln(a) to solve:
\ln^{2}(a)=3\ln(a)-2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top