MHB Continuous joint probability density functions

das1
Messages
40
Reaction score
0
Consider the following joint probability distribution function of (X , Y):

a(x + y^2) {0<=x<=2, 0<=y<=2}
0 otherwise

Calculate the value of the constant a that makes this a legitimate probability distribution. (Round your answer to four decimal places as appropriate.)

And then,
For the distribution above, determine the marginal probability density function of Y and use it to calculate the probability that 0.25 < Y < 0.75. (Round your answer to the fourth decimal place as appropriate.)
 
Mathematics news on Phys.org
What have you tried so far? What properties of joint probability distribution functions do you know? There is one property that was used in a thread you made yesterday which is useful here, just extended to two variables.
 
OK so this is what I've done:
I set up the integral from 0 to 2 of (x+y^2)dx dy = 1
I've never done an integral with 2 variables before but I plugged it into this calculator:
Integral Calculator - Symbolab
and it gave me 28/3 ? Set that = 1 and divide and get 3/28?

That's my best guess so far, but I could be way off.
 
You've never worked with double integrals before? Do you know how to solve something like this?

$$\int_{0}^{1} \int_{1}^{5} x+ydydx$$

If not you haven't been given the tools you need to solve this problem so it's totally understandable why this is difficult! :)

You are on the right track though in your reasoning. The double integral of the joint pdf should equal one:

$$\int_{0}^{2} \int_{0}^{2} a(x+y^2)dydx=1$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top