Ted123
- 428
- 0
I've tried this using the definition of a contour integral and Cauchy's residue theorem but get conflicting answers.
\displaystyle f(z) = \frac{z+1}{z(2z-1)(z+2)}
We can parametrise the contour \gamma (the unit circle) by \gamma(t) = e^{it} for t \in [0, 2\pi ]
So by the definition of a contour integral
2\pi i \times I = \displaystyle \int^{2\pi}_0 \frac{e^{it}+1}{2e^{3it} + 3e^{2it} - 2e^{it}} \times ie^{it}\;dt = \frac{\pi i}{5}
But using the residue therem
\displaystyle \text{res}(f,0) = -\frac{1}{2}
\displaystyle \text{res} \left( f,\frac{1}{2} \right) = \frac{6}{5}
\displaystyle \text{res} (f,-2) = -\frac{1}{10}
\gamma wraps once (in the negative direction) around z=0 and z=\frac{1}{2} so n (\gamma, 0) = n (\gamma, \frac{1}{2}) = -1 and n (\gamma, -2) = 0
So \displaystyle 2\pi i \times I = 2\pi i \left(-\frac{1}{2} \times -1 + \frac{6}{5} \times -1 \right) = -\frac{7\pi i}{5}
which is not what I got before.