BOAS
- 546
- 19
Hi,
I am confused about how I arrive at the contracted epsilon identity. \epsilon_{ijk} \epsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}
1. Homework Statement
Show that \epsilon_{ijk} \epsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}
[/B]
From the relation between the Levi-civita symbol and the Kronecker delta, I compute \epsilon_{ijk} \epsilon_{imn} by finding the determinant of the following matrix.
\epsilon_{ijk} \epsilon_{imn} = det \left[ \begin{array}{cccc} \delta_{ii} & \delta_{im} & \delta_{in} \\ \delta_{ji} & \delta_{jm} & \delta_{jn} \\ \delta_{ki} & \delta_{km} & \delta_{kn} \end{array} \right] which yields
\epsilon_{ijk} \epsilon_{imn} = \delta_{ii} (\delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}) - \delta_{im} (\delta_{ji} \delta_{kn} - \delta_{jn} \delta_{ki}) + \delta_{in} (\delta_{ji} \delta_{km} - \delta_{jm} \delta_{ki})I am confused about how to progress.
Thanks for any help you can give.
I am confused about how I arrive at the contracted epsilon identity. \epsilon_{ijk} \epsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}
1. Homework Statement
Show that \epsilon_{ijk} \epsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}
Homework Equations
The Attempt at a Solution
[/B]
From the relation between the Levi-civita symbol and the Kronecker delta, I compute \epsilon_{ijk} \epsilon_{imn} by finding the determinant of the following matrix.
\epsilon_{ijk} \epsilon_{imn} = det \left[ \begin{array}{cccc} \delta_{ii} & \delta_{im} & \delta_{in} \\ \delta_{ji} & \delta_{jm} & \delta_{jn} \\ \delta_{ki} & \delta_{km} & \delta_{kn} \end{array} \right] which yields
\epsilon_{ijk} \epsilon_{imn} = \delta_{ii} (\delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}) - \delta_{im} (\delta_{ji} \delta_{kn} - \delta_{jn} \delta_{ki}) + \delta_{in} (\delta_{ji} \delta_{km} - \delta_{jm} \delta_{ki})I am confused about how to progress.
Thanks for any help you can give.