Hummingbird25
- 84
- 0
Hi
Looking at the series
\sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}
This series has the radius of Convergence R = 1.
Show that the series
converge for every z \in \{w \in \mathbb{C} | |w| \leq 1 \}
And Secondly I need to show that
g(z) = \sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}
Is continius in z \in \{w \in \mathbb{C} | |w| \leq 1 \}
Solution:
(1)
Since R = 1, then
\displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{n(n+1)} = 0
b_n = \displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{(n+1)(n+1)+1} = b_{n +1}
Therefore converge the z \in \{w \in \mathbb{C} | |w| \leq 1 \}
(2) Doesn't that follow from (1) ?
Sincerely Yours
Hummingbird25
Looking at the series
\sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}
This series has the radius of Convergence R = 1.
Show that the series
converge for every z \in \{w \in \mathbb{C} | |w| \leq 1 \}
And Secondly I need to show that
g(z) = \sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}
Is continius in z \in \{w \in \mathbb{C} | |w| \leq 1 \}
Solution:
(1)
Since R = 1, then
\displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{n(n+1)} = 0
b_n = \displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{(n+1)(n+1)+1} = b_{n +1}
Therefore converge the z \in \{w \in \mathbb{C} | |w| \leq 1 \}
(2) Doesn't that follow from (1) ?
Sincerely Yours
Hummingbird25
Last edited: