Zetison
- 35
- 0
Homework Statement
Show that the folowing holds:
\lim_{n\to\infty} \frac{(n!)^2 4^n}{(2n)!} = \infty
Homework Equations
It can be shown that
\frac{(n!)^2 4^n}{(2n)!} = \prod_{k=1}^n \frac{4k}{k+n}
The Attempt at a Solution
If I can proove that
\lim_{n\to\infty} \ln\left[\frac{(n!)^2 4^n}{(2n)!} \right] = \infty
then I am done since the logarithm is a strictly increasing function.
By using the "Relevant equation" I have
\ln\left[\frac{(n!)^2 4^n}{(2n)!} \right] = \ln\left[\prod_{k=1}^n \frac{4k}{k+n}\right] = \sum_{k=1}^n \ln\left(\frac{4}{1+\frac{n}{k}}\right)
But from here I don't get any further...
Last edited: