(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose sum(a_n*x^n) represents a power series with radius of convergence (-R, R). Is it true that the series sum(n*a_n*x^n) is convergent? Prove or give a counter example.

2. Relevant equations

3. The attempt at a solution

Let b_n = n*a_n*x^n

Using ratio test:

lim[b_(n+1)/b_n] = lim [(n+1)/n] * [lim x*a_(n+1)/a_n] < 1 because lim x*a_(n+1)/a_n <1 from hypothesis.

Any gaps in logic?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Convergence of power series

**Physics Forums | Science Articles, Homework Help, Discussion**