# Convert sentences into First Order Logic

(1) Anyone who is thin, tall and energetic will be good basketball player.
(2) Some people are tall but not good basketball players.
(3) Anyone who do exercise or eating healthy food will be energetic.
(4) Saman is thin and tall person who do exercises.

Write the above sentences in First Order Logic.

I have tried like this:

(1) ∀x thin(x) ∧ tall(x) ∧ energetic(x) → good_basketball_player(x)
(2) ∃x tall(x) ¬ good_basketball_player(x)
(3) ∀x do_exercise(x) ∨ eating_healthy_food(x) → energetic(x)
(4) thin(saman) ∧ tall(saman) ∧ do_exercise(saman)

## Answers and Replies

TeethWhitener
Gold Member
Some parentheses in the first three sentences would help to make it clear which part the quantifiers apply to. You're also missing a ∧ in #2.

Upeksha
Thank you. Is it correct now?

(1) ∀x [thin(x) ∧ tall(x) ∧ energetic(x)] → good_basketball_player(x)
(2) ∃x [tall(x) ¬ good_basketball_player(x)]
(3) ∀x [do_exercise(x) ∨ eating_healthy_food(x)] → energetic(x)
(4) thin(saman) ∧ tall(saman) ∧ do_exercise(saman)

TeethWhitener