Converting Coordinate Systems: Exploring the Force on a Semicircular Conductor

Click For Summary

Homework Help Overview

The discussion revolves around the application of coordinate systems, specifically cylindrical and Cartesian coordinates, in analyzing the force on a semicircular conductor. Participants explore the implications of integrating vector quantities in different coordinate systems and the challenges that arise from the varying definitions of radial direction.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the attempt to use cylindrical coordinates for integration and the complications that arise from the radial unit vector's variability. Questions are raised about the meaning of radial direction in the context of the semicircular geometry and the implications for net force calculations.

Discussion Status

The conversation is ongoing, with participants providing insights into the limitations of using cylindrical coordinates for this problem. Some suggest that reverting to Cartesian coordinates may yield clearer results, while others emphasize the importance of defining the radial direction in relation to specific points along the semicircle.

Contextual Notes

There is a recognition of the complexity involved in integrating vector quantities in different coordinate systems, particularly regarding the consistency of basis vectors and the implications for symmetry in the problem setup.

pobro44
Messages
11
Reaction score
0
1. The problem statement, all variables and given/known dana

Screenshot_30.png

I was revisiting University physics textbook and came across this problem. We learned new coordinate systems in classical mechanics classes so I wanted to see if I can apply this to the problem of force on semicircular part of the conductor

Homework Equations



Cartesian and cylindrical coordinates

The Attempt at a Solution



I tried using cylindrical coordinates. I rewrote radial vector (here marked by s unit vector…in a hurry I dropped the unit vector on second line) in cartesian coordinates and integrated. Result is correct.
IMG_20180628_232830_5130_2.png


However if I choose not to use conversion to cartesian coordinates and just integrate like this, putting the radial vector in front of integral (now marked with r unit vector) I get the following:

IMG_20180628_232830_5130.png
So, I have a force in radial direction. Makes sense, it is always directed perpendicular to the semircircle tangent. And it is obvious by symetry that x cartesian components cancel out leaving only y component. However, these 2 results should be the same. If they are, then we should be able to rewrite the cylindrical radial unit vector as 2/pi * y hat unit vector in cartesian coordinates. I may be missing something obvious or made an embarassing mistake, but I see no way to convert the result that way (eliminating pi in particular).
 

Attachments

  • Screenshot_30.png
    Screenshot_30.png
    94.1 KB · Views: 912
  • IMG_20180628_232830_5130_2.png
    IMG_20180628_232830_5130_2.png
    46.5 KB · Views: 625
  • IMG_20180628_232830_5130.png
    IMG_20180628_232830_5130.png
    10.5 KB · Views: 895
Last edited:
Physics news on Phys.org
pobro44 said:
However if I choose not to use conversion to cartesian coordinates and just integrate like this, putting the radial vector in front of integral (now marked with r unit vector) I get the following:

View attachment 227450
It’s a bit hard to read others’ handwriting. Is that an ##\hat r## that you just took out of the integral? ##\hat r## varies over the integral, so that is an improper thing to do. As you said, by symmetry, only the y component survives. So then integrate just that component.
pobro44 said:
So, I have a force in radial direction. Makes sense,
How does that make sense when that should be the net force and there are infinite unique “radial direction”s?
 
  • Like
Likes   Reactions: pobro44 and Orodruin
Nathanael said:
How does that make sense when that should be the net force and there are infinite unique “radial direction”s?
This is a point that cannot be underlined enough times. Without reference to a particular point, talking about a ”radial” direction is meaningless. Would that be the radial direction at the beginning of the half-circle or at the end (those are opposite) or maybe in the middle? It just does not have a well defined meaning to talk about the radial direction for a vector valued integral.
 
  • Like
Likes   Reactions: pobro44
I think you chose a bad problem to practice cylindrical coordinates with.

See, the solution at the end depends only on ##\hat{j}##, this means if you worked your problem with cylindrical coordinates, at the end you will have more than one basis, which would look awful and without meaning. You will eventually write it back with Cartesian coordinates to have it written with one basis.

I actually understand why you chose cylindrical coordinates. Because we have half a circle, but the symmetry force you back to Cartesian coordinates. Funny right! (of course you can still write it in cylindrical coordinates, but it won't look elegant)

Orodruin said:
This is a point that cannot be underlined enough times. Without reference to a particular point, talking about a ”radial” direction is meaningless. Would that be the radial direction at the beginning of the half-circle or at the end (those are opposite) or maybe in the middle? It just does not have a well defined meaning to talk about the radial direction for a vector valued integral.

I think, if we are working with vectors inside an integral, the safest thing to do is to transform back to Cartesian coordinates. Since you are sure the bases are independent.
 
  • Like
Likes   Reactions: pobro44
Phylosopher said:
I think, if we are working with vectors inside an integral, the safest thing to do is to transform back to Cartesian coordinates. Since you are sure the bases are independent.
It is not about bases being independent, it is about the basis being constant. You could perfectly well choose an arbitrary point and express the result in the cylinder basis of that point, but that is just choosing a different fixed basis. In flat spaces, it is posible to do this without ever referencing a Cartesian coordinate system, but that seems rather tedious and unnecessary. Once you go on to curved spaces, integrals like this typically do not make sense at all.
 
  • Like
Likes   Reactions: pobro44 and Phylosopher
Thank you for all your answers. I believe I get it. I can't take radial unit vector outside the integral, cause it changes around path of integration, and it is obvious that it depends on the angle once I convert it to cartesian coordinates. Only cartesian unit vectors are safe to put in front of integral. Also, while the force is radial on every point of integration path, net force being radial is meaningless, just as although infitesimal part of area vector of a sphere is radial it would make little sense for area of whole sphere to be.
 

Similar threads

Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K