Converting triple integral coordinates

619313
Messages
8
Reaction score
0
1. consider the triple integral (x^2 +Y^2) dV where it is bounded by a solid sphere of radius R. Set up the integral using rectangular coordinatesI tried setting this up with the bounds [ -sqrt(R^2-x^2-Y^2) <= Z <= sqrt(R^2-x^2-Y^2) ,
-R <= X <= R , -sqrt(R^2-x^2) <= Y <= sqrt(R^2-x^2) ] am I on the right path?
 
Last edited:
Physics news on Phys.org
Yes, but make sure you have them in the correct order when you write down the integrals.
 
Fantastic! Yea I know that it goes dz dy dx
now How about if I rewrite to cylindrical coordinates?
0<= theta <= 2pi , 0<=r<=R , -sqrt(R^2-r^2)<=z<= sqrt(R^2-r^2) with the integrand being r^3 dz dr dtheta
 
Yes, you've got it.
 
first, thanks so much for the help

just to make sure I fully understand all of these triple integrals, to set it up in spherical I should get
0<= theta<= 2pi, 0<= phi <= pi, 0<= p <= R,
where the integrand is (p^4) (sin(FI))^3 dp dphI dtheta
 
Yes. Very nice. And welcome to the Physics forum.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top