Correlation coefficient: show 1-r^2 is the ratio of 0th and 1st order models

  • Thread starter Thread starter applestrudle
  • Start date Start date
applestrudle
Messages
64
Reaction score
0
Homework Statement
You have a linear model y = a+bx. Using the mean square error function for a zeroth order model (b=0 and a = <y>) and a first order model b=Covariance(x,y)/Variance(x) and a = <y> - b<x> show that E1/E0 = 1-r^2
Relevant Equations
MSE function E = <(y - a -bx)^2>
Correlation coefficient r = Covariance(x,y)/Standardev(x)Standarddev(y)
Standarddev = Square root of variance
The zeroth order model gives E0 = Var(y)

I've tried two methods:
Calculating 1-r^2 and trying to get E1/E0.
Calculating E1/E0 and trying to get 1-r^2.
 
Physics news on Phys.org
applestrudle said:
I've tried two methods:
And what do you get?
 
@applestrudle I'm a bit confused by your notation overall. You defined E as a function of x ( equiv y) then used E0, E1. Is E0:=E(0), E1:=E(1)?
 
You haven't written down what ##r^2## is, which feels like an important piece.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top