"pi"mp
- 129
- 1
I've been thinking about the number of degrees of freedom in a tensor with n indices in 2-dimensions which is traceless and symmetric. Initially, there are 2^{n} degrees of freedom. The hypothesis of symmetry provides n!-1 number of conditions of the form:
T_{i_{1}, \ldots i_{n}}- T_{\sigma i_{1}, \ldots \sigma i_{n}} =0
since there are n! permutations, including identity. So why doesn't this reduce the number of degrees of freedom by n!-1 ? Are these conditions not all independent?
I think I'm correct that tracelessness reduces the degrees of freedom by \binom{n}{2} since we choose two indices to contract with g^{ab}, but maybe not.
T_{i_{1}, \ldots i_{n}}- T_{\sigma i_{1}, \ldots \sigma i_{n}} =0
since there are n! permutations, including identity. So why doesn't this reduce the number of degrees of freedom by n!-1 ? Are these conditions not all independent?
I think I'm correct that tracelessness reduces the degrees of freedom by \binom{n}{2} since we choose two indices to contract with g^{ab}, but maybe not.