Stephen, your interpretation looks correct to me. And I am indeed interested in quantities like VAR(\alpha_1) and COV(\alpha_1, \alpha_2).
Now that you guys have prodded me into formulating the question correctly, and you've interpreted it like that, the answer is beginning to be apparent.
Denoting C^{-1} as \widehat{C}, and the subscripts i,j as the row and column indices,
\alpha_1 = \widehat{C}_{1,1}p_{1} + \widehat{C}_{1,2}p_{2} + \widehat{C}_{1,3}p_{3} + \widehat{C}_{1,4}
\alpha_2 = \widehat{C}_{2,1}p_{1} + \widehat{C}_{2,2}p_{2} + \widehat{C}_{2,3}p_{3} + \widehat{C}_{2,4}
\alpha_3 = \widehat{C}_{3,1}p_{1} + \widehat{C}_{3,2}p_{2} + \widehat{C}_{3,3}p_{3} + \widehat{C}_{3,4}
\alpha_4 =\widehat{C}_{4,1}p_{1} + \widehat{C}_{4,2}p_{2} + \widehat{C}_{4,3}p_{3} + \widehat{C}_{4,4}
So, solving COV(\alpha_1, \alpha_2) for example:
COV(\alpha_1, \alpha_2) = E\left[\left(\alpha_1 - E\left[\alpha_1\right]\right)\left(\alpha_2 - E\left[\alpha_2\right]\right)\right]
= E\left[ \left(\widehat{C}_{1,1}p_{1} + \widehat{C}_{1,2}p_{2} + \widehat{C}_{1,3}p_{3} + \widehat{C}_{1,4} - E\left[ \widehat{C}_{1,1}p_{1} + \widehat{C}_{1,2}p_{2} + \widehat{C}_{1,3}p_{3} + \widehat{C}_{1,4}\right]\right)\left(\widehat{C}_{2,1}p_{1} + \widehat{C}_{2,2}p_{2} + \widehat{C}_{2,3}p_{3} + \widehat{C}_{2,4} - E\left[\widehat{C}_{2,1}p_{1} + \widehat{C}_{2,2}p_{2} + \widehat{C}_{2,3}p_{3} + \widehat{C}_{2,4}\right]\right)\right]
= E\left[ \left(\widehat{C}_{1,1}p_{1} + \widehat{C}_{1,2}p_{2} + \widehat{C}_{1,3}p_{3} + \widehat{C}_{1,4} - E\left[ \widehat{C}_{1,1}p_{1}\right] - E\left[ \widehat{C}_{1,2}p_{2}\right] - E\left[ \widehat{C}_{1,3}p_{3}\right] - E\left[ \widehat{C}_{1,4}\right]\right)\left(\widehat{C}_{2,1}p_{1} + \widehat{C}_{2,2}p_{2} + \widehat{C}_{2,3}p_{3} + \widehat{C}_{2,4} - E\left[\widehat{C}_{2,1}p_{1}\right] - E\left[ \widehat{C}_{2,2}p_{2}\right] - E\left[ \widehat{C}_{2,3}p_{3}\right] - E\left[ \widehat{C}_{2,4}\right]\right)\right]
= E\left[ \left(\widehat{C}_{1,1}\left(p_{1} - E\left[p_{1}\right]\right) + \widehat{C}_{1,2}\left(p_{2} - E\left[p_{2}\right]\right) + \widehat{C}_{1,3}\left(p_{3} - E\left[ p_{3}\right]\right)\right)\left(\widehat{C}_{2,1}\left(p_{1} - E\left[p_{1}\right]\right) + \widehat{C}_{2,2}\left(p_{2} - E\left[p_{2}\right]\right) + \widehat{C}_{2,3}\left(p_{3} - E\left[ p_{3}\right]\right)\right)\right]
= \widehat{C}_{1,1}\widehat{C}_{2,1}E\left[\left(p_{1} - E\left[p_{1}\right]\right)^{2}\right] + \widehat{C}_{1,1}\widehat{C}_{2,2}E\left[\left(p_{1} - E\left[p_{1}\right]\right)\left(p_{2} - E\left[p_{2}\right]\right)\right] + \widehat{C}_{1,1}\widehat{C}_{2,3}E\left[\left(p_{1} - E\left[p_{1}\right]\right)\left(p_{3} - E\left[p_{3}\right]\right)\right]
+ \widehat{C}_{1,2}\widehat{C}_{2,1}E\left[\left(p_{2} - E\left[p_{2}\right]\right)\left(p_{1} - E\left[p_{1}\right]\right)\right] + \widehat{C}_{1,2}\widehat{C}_{2,2}E\left[\left(p_{2} - E\left[p_{2}\right]\right)^{2}\right]+ \widehat{C}_{1,2}\widehat{C}_{2,3}E\left[\left(p_{2} - E\left[p_{2}\right]\right)\left(p_{3} - E\left[p_{3}\right]\right)\right]
+ \widehat{C}_{1,3}\widehat{C}_{2,1}E\left[\left(p_{3} - E\left[p_{3}\right]\right)\left(p_{1} - E\left[p_{1}\right]\right)\right] + \widehat{C}_{1,3}\widehat{C}_{2,2}E\left[\left(p_{3} - E\left[p_{3}\right]\right)\left(p_{2} - E\left[p_{2}\right]\right)\right] + \widehat{C}_{1,3}\widehat{C}_{2,3}E\left[\left(p_{3} - E\left[p_{3}\right]\right)^{2}\right]
where E\left[\left(p_{1} - E\left[p_{1}\right]\right)^{2}\right], E\left[\left(p_{2} - E\left[p_{2}\right]\right)^{2}\right], E\left[\left(p_{3} - E\left[p_{3}\right]\right)^{2}\right], E\left[\left(p_{1} - E\left[p_{1}\right]\right)\left(p_{2} - E\left[p_{2}\right]\right)\right], E\left[\left(p_{1} - E\left[p_{1}\right]\right)\left(p_{3} - E\left[p_{3}\right]\right)\right], and E\left[\left(p_{2} - E\left[p_{2}\right]\right)\left(p_{3} - E\left[p_{3}\right]\right)\right] are all known from the entries of the input covariance matrix of p,
and the entries of C_{i,j} are also known.
Is there a more elegant way to express this? Writing that out for every all the combinations of \alpha's is pretty cumbersome.
Thanks again for your help, and for prodding me to get this into a form where the answer was apparent!