faklif
- 17
- 0
Homework Statement
The problem concerns how to transform a covariant differentiation. Using this formula for covariant differentiation and demanding that it is a (1,1) tensor:
<br /> \nabla_cX^a=\partial_cX^a+\Gamma^a_{bc}X^b<br />
it should be proven that
<br /> \Gamma'^a_{bc}=<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^e}{{\partial}x'^b}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \Gamma^d_{ef}<br /> -<br /> \frac{{\partial}x^d}{{\partial}x'^b}<br /> \frac{{\partial}x^e}{{\partial}x'^c}<br /> \frac{{\partial}^2x'^a}{{{\partial}x^d}{{\partial}x^e}}<br />
Homework Equations
<br /> \partial'_cX'^a=<br /> \frac{{\partial}x^f}{{\partial}x'^c}\frac{\partial}{{\partial}x^f}<br /> (<br /> \frac{{\partial}x'^a}{{\partial}x^d}X^d<br /> )=<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \frac{\partial}{{\partial}x^f}<br /> X^d<br /> +<br /> \frac{{\partial}^2x'^a}{{\partial}x^f{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> X^d<br />
<br /> X^d<br /> =<br /> \frac{{\partial}x^d}{{\partial}x'^b}<br /> \frac{{\partial}x'^b}{{\partial}x^d}<br /> X^d<br /> =<br /> \frac{{\partial}x^d}{{\partial}x'^b}<br /> X'^b<br />
<br /> X^e<br /> =<br /> \frac{{\partial}x^e}{{\partial}x'^b}<br /> X'^b<br />
The Attempt at a Solution
I thought I'd simply look at the primed coordinates from two directions and that that should do it... didn't quite happen as planned though.
In primed coordinates
<br /> \nabla_cX^a'<br /> =<br /> {\partial}'_cX'^a<br /> +<br /> \Gamma^a_{bc}'X'^b<br />
Transformed using the equations under 2.
<br /> \nabla_cX^a'<br /> =<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \frac{\partial}{{\partial}x^f}<br /> X^d<br /> +<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \Gamma^d_{ef}X^e<br /> =<br /> {\partial}'_cX'^a<br /> -<br /> \frac{{\partial}^2x'^a}{{\partial}x^f{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> X^d<br /> +<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \Gamma^d_{ef}X^e<br /> =<br /> {\partial}'_cX'^a<br /> -<br /> \frac{{\partial}^2x'^a}{{\partial}x^f{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \frac{{\partial}x^d}{{\partial}x'^b}<br /> X'^b<br /> +<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \Gamma^d_{ef}<br /> \frac{{\partial}x^e}{{\partial}x'^b}<br /> X'^b<br />
So my thought was that anything related to X'^b would be the what I seek which gives
<br /> \Gamma'^a_{bc}=<br /> \frac{{\partial}x'^a}{{\partial}x^d}<br /> \frac{{\partial}x^e}{{\partial}x'^b}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \Gamma^d_{ef}<br /> -<br /> \frac{{\partial}x^d}{{\partial}x'^b}<br /> \frac{{\partial}x^f}{{\partial}x'^c}<br /> \frac{{\partial}^2x'^a}{{\partial}x^f{\partial}x^d}<br />
This i kind of close but it's different in the last part where I have f:s instead of e:s. I would really appreciate some help, I've been stuck for a long time.