Covariant Derivatives (1st, 2nd) of a Scalar Field

rezkyputra
Messages
5
Reaction score
2

Homework Statement


Suppose we have a covariant derivative of covariant derivative of a scalar field. My lecturer said that it should be equal to zero. but I seem to not get it

Homework Equations


Suppose we have
$$X^{AB} = \nabla^A \phi \nabla^B \phi - \frac{1}{2} g^{AB} \nabla_C \phi \nabla^C \phi $$
it should be proven that
$$\nabla_A \: X^{AB} =0$$
with ##\phi## is a scalar field

The Attempt at a Solution



Naturally, we would expand the equations.
\begin{align}\nabla_A \: X^{AB} &= \nabla_A \left[ \nabla^A \phi \nabla^B \phi - \frac{1}{2} g^{AB} \nabla_C \phi \nabla^C \phi \right] \\
&= \nabla^B \phi \left[ \nabla_A \nabla^A \phi \right] + \nabla^A \phi \left[ \nabla_A \nabla^B \phi \right] - \frac{1}{2} g^{AB} \nabla_C \phi \left[\nabla_A \nabla^C \phi\right] - \frac{1}{2} g^{AB} \nabla^C \phi \left[\nabla_A \nabla_C \phi\right]
\end{align}

We know that the covariant derivative of a scalar is its partial derivative ## \nabla_A \phi = \partial_A \phi##

\begin{align}\nabla_A \: X^{AB} &= \partial^B \phi \left[ \nabla_A \partial^A \phi \right] + \partial^A \phi \left[ \nabla_A \partial^B \phi \right] - \frac{1}{2} g^{AB} \partial_C \phi \left[\nabla_A \partial^C \phi\right] - \frac{1}{2} g^{AB} \partial^C \phi \left[\nabla_A \partial_C \phi\right]
\end{align}

Now the 2nd Cov. Der. would depends on the christoffel symbol where
\begin{align}
\nabla_A \partial_B \phi &= \partial_A \partial_B \phi - \partial_C \phi \Gamma_{AB}^C \\
\nabla_A \partial^B \phi &= \partial_A \partial^B \phi + \partial^C \phi \Gamma_{AC}^B
\end{align}

so that
\begin{align}\nabla_A \: X^{AB} &= \partial^B \phi \left[ \partial_A \partial^A \phi + \partial^C \phi \Gamma_{AC}^A \right] + \partial^A \phi \left[ \partial_A \partial^B \phi + \partial^C \phi \Gamma_{AC}^B \right] \\
\nonumber
& - \frac{1}{2} g^{AB} \partial_C \phi \left[\partial_A \partial^C \phi + \partial^D \phi \Gamma_{AD}^C\right] - \frac{1}{2} g^{AB} \partial^C \phi \left[\partial_A \partial_C \phi - \partial_D \phi \Gamma_{AC}^D\right]
\end{align}

Now I'm stuck as to where should I go? How could t be proven that last (and quite long) equation be equal to zero?
Any help would be much appreciated
Thanks in advance
 
Physics news on Phys.org
rezkyputra said:
Suppose we have a covariant derivative of covariant derivative of a scalar field. My lecturer said that it should be equal to zero.
That doesn't sound correct to me. IIRC the covariant derivative of the covariant derivative of scalar field ##\phi## is a ##\pmatrix{0\\2}## tensor whose ##(\alpha,\beta)## element is
$$\phi_{;\alpha\beta}=\partial_\beta\partial_\alpha\phi-\Gamma^\mu_{\alpha\beta}(\partial_\mu\phi)$$
which is not in general zero.
 
andrewkirk said:
That doesn't sound correct to me. IIRC the covariant derivative of the covariant derivative of scalar field ##\phi## is a ##\pmatrix{0\\2}## tensor whose ##(\alpha,\beta)## element is
$$\phi_{;\alpha\beta}=\partial_\beta\partial_\alpha\phi-\Gamma^\mu_{\alpha\beta}(\partial_\mu\phi)$$
which is not in general zero.

All in all, said tensor ##X^{AB}## in my post was actually an Energy momentum tensor, which should have a covariant derivative of zero ##\nabla_A X^{AB} = \nabla_A T^{AB} = 0 ##

or is there a special case where that would be zero?
 
rezkyputra said:

Homework Statement


Suppose we have a covariant derivative of covariant derivative of a scalar field. My lecturer said that it should be equal to zero. but I seem to not get it

Homework Equations


Suppose we have
$$X^{AB} = \nabla^A \phi \nabla^B \phi - \frac{1}{2} g^{AB} \nabla_C \phi \nabla^C \phi $$
it should be proven that
$$\nabla_A \: X^{AB} =0$$
with ##\phi## is a scalar field

The Attempt at a Solution



Naturally, we would expand the equations.
\begin{align}\nabla_A \: X^{AB} &= \nabla_A \left[ \nabla^A \phi \nabla^B \phi - \frac{1}{2} g^{AB} \nabla_C \phi \nabla^C \phi \right] \\
&= \nabla^B \phi \left[ \nabla_A \nabla^A \phi \right] + \nabla^A \phi \left[ \nabla_A \nabla^B \phi \right] - \frac{1}{2} g^{AB} \nabla_C \phi \left[\nabla_A \nabla^C \phi\right] - \frac{1}{2} g^{AB} \nabla^C \phi \left[\nabla_A \nabla_C \phi\right]
\end{align}

We know that the covariant derivative of a scalar is its partial derivative ## \nabla_A \phi = \partial_A \phi##

\begin{align}\nabla_A \: X^{AB} &= \partial^B \phi \left[ \nabla_A \partial^A \phi \right] + \partial^A \phi \left[ \nabla_A \partial^B \phi \right] - \frac{1}{2} g^{AB} \partial_C \phi \left[\nabla_A \partial^C \phi\right] - \frac{1}{2} g^{AB} \partial^C \phi \left[\nabla_A \partial_C \phi\right]
\end{align}

Now the 2nd Cov. Der. would depends on the christoffel symbol where
\begin{align}
\nabla_A \partial_B \phi &= \partial_A \partial_B \phi - \partial_C \phi \Gamma_{AB}^C \\
\nabla_A \partial^B \phi &= \partial_A \partial^B \phi + \partial^C \phi \Gamma_{AC}^B
\end{align}

so that
\begin{align}\nabla_A \: X^{AB} &= \partial^B \phi \left[ \partial_A \partial^A \phi + \partial^C \phi \Gamma_{AC}^A \right] + \partial^A \phi \left[ \partial_A \partial^B \phi + \partial^C \phi \Gamma_{AC}^B \right] \\
\nonumber
& - \frac{1}{2} g^{AB} \partial_C \phi \left[\partial_A \partial^C \phi + \partial^D \phi \Gamma_{AD}^C\right] - \frac{1}{2} g^{AB} \partial^C \phi \left[\partial_A \partial_C \phi - \partial_D \phi \Gamma_{AC}^D\right]
\end{align}

Now I'm stuck as to where should I go? How could t be proven that last (and quite long) equation be equal to zero?
Any help would be much appreciated
Thanks in advance
You have forgotten to apply the covariant derivative to the metric g^{AB}.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top