Crystal spacing of a solid surface, Bragg's law

1101
Messages
23
Reaction score
0

Homework Statement



In a particular Low Energy Electron Diffraction (LEED) study of a solid surface, electrons at 45 eV were diffracted at \phi = 53 degrees. Calculate the crystal spacing d.

Homework Equations



n\lambda=2dsin(\phi)
\lambda = hc/E
wavelength = c/v
E = vh(n + 1/2)

Note here v is the frequency (nu looked weird on this site)

The Attempt at a Solution



This questions comes from a problem in my textbook that was a recommended practice problem for an upcoming exam. Despite being an odd numbered problem the answer to it wasn't in the back of the book (figures). Anyways I just wanted to make sure I was solving it correctly.

Firstly I converted the 45 electronvolts into 7.209765E-18 Joules
Then by wavelength = hc/E, i found the wavelength to be 2.754E-8 Meters
Then I found the frequency to be 1.089324619E16 s-1
Next I found n to be 1/2 (which is weird cause I thought it would be an integer)
Lastly I plugged these values into bragg's law and got 8.623E-9 Meters

Like I said the answer was not in the book for some reason and I'd like to know if I'm doing this right
 
Physics news on Phys.org
You need to show your steps better. Also, why are you using the last equation listed? That is for a quantum harmonic oscillator. In this case you just have diffraction.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top