Curl of the partial derivative of a scalar

JerryG
Messages
58
Reaction score
0
I have a problem where part of the solution involves taking the Curl of the partial derivative of a scalar.

If A is a scalar function, then wouldn't taking the partial derivative of A with respect to time "t" just give another scalar function?
 
Physics news on Phys.org
So you have A(x,y,z,t) and want to find partial wrt t, then yes it is a scalar function, finding the gradient would yield vector field
 
You can take the curl only wrt spatial components. And the curl operator must act on at least on a covector. The gradient wrt one of the components of a scalar function is such type of covector. But the curl of gradient of a scalar fiels is 0.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top