Cyclic set: Difference between generator and unit

smithnya
Messages
41
Reaction score
0
Hello everyone,

I've just begun a lesson on cyclic sets, but I am having problems determining a few concepts. One question will ask me to find the generators and the units of a cyclic set Z8. I have become confused and realized that I did not understand the difference between a generator and a unit in a cyclic set. Could someone explain such difference?
 
Physics news on Phys.org
perhaps you mean cyclic groups, or more generally a cyclic ring?

in Z8 there are two operations: addition modulo 8, and multiplication modulo 8. now 8 is not prime, and one consequence of this is that Z8 - {0} is not a group under multiplication.

nevertheless, certain elements of (Z8)* do indeed have inverses:

(3)(3) = 9 = 1 (mod 8), so 3 is its own inverse in Z8 (under multiplication mod 8).

the elements that possesses inverses under multiplication modulo 8 are called units, and form a group, the group of units of Z8 (sometimes denoted U(8)).

one can show that U(8) is NOT cyclic, so it does not have a single generator (it takes at least two).

for certain integers n, U(n) IS cyclic, and one can speak of a generator, or "primitive element".

as far as the ADDITIVE group of Z8, that is (of course) cyclic, and it just so happens that the generators of Z8 as a cyclic group (under addition modulo 8) are also the units (elements of U(8)).

there is, in fact, this theorem:

k is a unit of Zn iff gcd(k,n) = ?

(see if you can guess the answer).
 
Is an element only a unit if it possesses a multiplicative inverse then?
 
smithnya said:
Is an element only a unit if it possesses a multiplicative inverse then?

in a ring, yes.

ok, the cyclic group Z8 is {0,1,2,3,4,5,6,7}, where the group operation is addition modulo 8. technically, i should write [k] instead of k, since these are NOT integers, but equivalence classes of integers, but this abuse of notation is common-place.

as a(n additive) group the generators of Z8 are 1,3,5 and 7 (these are the only elements of additive order 8).

but as a ring, Z8 is not a domain, because it has zero-divisors: for example, 2 and 4 are zero-divisors, since (2)(4) = 0 (mod 8). this also means 2 and 4 cannot possibly have inverses, because if (for example again) 4 had an inverse a:

((2)(4))a = 0a
2(4a) = 0
2(1) = 0
2 = 0, a contradiction.

this happens precisely because 4 and 8 have a common divisor.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top