babyEigenshep
- 5
- 0
Homework Statement
Show that with d spatial dimensions the potential \phi due to a point charge q is given by
\phi (r) = \frac{\Gamma(\frac{d}{2}-1)}{4\pi^{d/2}}\frac{q}{r^{d-2}}
Homework Equations
The Attempt at a Solution
The electric field strength is known to be:
E(r) = \frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}}
E(r) = \sqrt{(\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}})^2}
E(r) = \sqrt{\frac{1}{d}\sum_{i=1}^d(\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}})^2}
E(r) = \sqrt{\sum_{i=1}^d(\frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}})^2}
Since the magnetic field will be the same in all directions, we know that
\vec {E}(r) = (\frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}},\frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}},\cdots)
\phi(r) = -\int\frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{q}{r^{d-1}}dr
\phi(r) = \frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{1}{(d-2)}\frac{q}{r^{d-2}}
\phi(r) = \frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2})}{2 \pi^{d/2}}\frac{1}{2(\frac{1}{2}d-1)}\frac{q}{r^{d-2}}
\phi(r) = \frac{1}{\sqrt{d}}\frac{\Gamma(\frac{d}{2}-1)}{4 \pi^{d/2}}\frac{q}{r^{d-2}}
Why am I getting an extra \frac{1}{\sqrt{d}}?